Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 226(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38066617

RESUMO

The level of resistance to radiation and the developmental and molecular responses can vary between species, and even between developmental stages of one species. For flies (order: Diptera), prior studies concluded that the fungus gnat Bradysia (Sciara) coprophila (sub-order: Nematocera) is more resistant to irradiation-induced mutations that cause visible phenotypes than the fruit fly Drosophila melanogaster (sub-order: Brachycera). Therefore, we characterized the effects of and level of resistance to ionizing radiation on B. coprophila throughout its life cycle. Our data show that B. coprophila embryos are highly sensitive to even low doses of gamma-irradiation, whereas late-stage larvae can tolerate up to 80 Gy (compared to 40 Gy for D. melanogaster) and still retain their ability to develop to adulthood, though with a developmental delay. To survey the genes involved in the early transcriptional response to irradiation of B. coprophila larvae, we compared larval RNA-seq profiles with and without radiation treatment. The up-regulated genes were enriched for DNA damage response genes, including those involved in DNA repair, cell cycle arrest, and apoptosis, whereas the down-regulated genes were enriched for developmental regulators, consistent with the developmental delay of irradiated larvae. Interestingly, members of the PARP and AGO families were highly up-regulated in the B. coprophila radiation response. We compared the transcriptome responses in B. coprophila to the transcriptome responses in D. melanogaster from 3 previous studies: whereas pathway responses are highly conserved, specific gene responses are less so. Our study lays the groundwork for future work on the radiation responses in Diptera.


Assuntos
Dípteros , Drosophila melanogaster , Humanos , Animais , Larva/genética , Drosophila melanogaster/genética , Dípteros/genética , Drosophila/genética , Nematóceros , Radiação Ionizante , Reparo do DNA
2.
Cell Rep ; 42(12): 113564, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38100350

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo
3.
Mol Cancer Ther ; 22(11): 1304-1318, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676980

RESUMO

Immune checkpoint inhibition combined with chemotherapy is currently approved as first-line treatment for patients with advanced PD-L1-positive triple-negative breast cancer (TNBC). However, a significant proportion of metastatic TNBC is PD-L1-negative and, in this population, chemotherapy alone largely remains the standard-of-care and novel therapeutic strategies are needed to improve clinical outcomes. Here, we describe a triple combination of anti-PD-L1 immune checkpoint blockade, epigenetic modulation thorough bromodomain and extra-terminal (BET) bromodomain inhibition (BBDI), and chemotherapy with paclitaxel that effectively inhibits both primary and metastatic tumor growth in two different syngeneic murine models of TNBC. Detailed cellular and molecular profiling of tumors from single and combination treatment arms revealed increased T- and B-cell infiltration and macrophage reprogramming from MHCIIlow to a MHCIIhigh phenotype in mice treated with triple combination. Triple combination also had a major impact on gene expression and chromatin profiles shifting cells to a more immunogenic and senescent state. Our results provide strong preclinical evidence to justify clinical testing of BBDI, paclitaxel, and immune checkpoint blockade combination.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas Nucleares , Fatores de Transcrição , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Imunoterapia/métodos
4.
Nat Commun ; 13(1): 7558, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476730

RESUMO

Cancer prevention has a profound impact on cancer-associated mortality and morbidity. We previously identified TGFß signaling as a candidate regulator of mammary epithelial cells associated with breast cancer risk. Here, we show that short-term TGFBR inhibitor (TGFBRi) treatment of peripubertal ACI inbred and Sprague Dawley outbred rats induces lasting changes and prevents estrogen- and carcinogen-induced mammary tumors, respectively. We identify TGFBRi-responsive cell populations by single cell RNA-sequencing, including a unique epithelial subpopulation designated secretory basal cells (SBCs) with progenitor features. We detect SBCs in normal human breast tissues and find them to be associated with breast cancer risk. Interactome analysis identifies SBCs as the most interactive cell population and the main source of insulin-IGF signaling. Accordingly, inhibition of TGFBR and IGF1R decrease proliferation of organoid cultures. Our results reveal a critical role for TGFß in regulating mammary epithelial cells relevant to breast cancer and serve as a proof-of-principle cancer prevention strategy.


Assuntos
Neoplasias , Ratos , Humanos , Animais , Ratos Endogâmicos ACI , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...