Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 72(5): 794-801, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26287839

RESUMO

The inhibitory effect of azo dyes and quinoid compounds on an anaerobic consortium was evaluated during a decolorization process and biogas production. In addition, the impact of quinoid compounds such as lawsone (LAW) and anthraquinone-2,6-disulfonate (AQDS) on the rate of decolorization of Direct Blue 71 (DB71) was assessed. The anaerobic consortium was not completely inhibited under all tested dye concentrations (0.1-2 mmol l(-1)), evidenced by an active decolorization process and biogas production. The presence of quinoid compounds at different concentrations (4, 8, and 12 mmol l(-1)) also inhibited biogas production compared to the control incubated without the quinoid compounds. In summary, the anaerobic consortium was affected to a greater extent by increasing the quantity of azo dyes or quinoid compounds. Nevertheless, at a lower concentration (1 mmol l(-1)) of quinoid compounds, the anaerobic consortium effectively decolorized 2 mmol l(-1) of DB71, increasing up to 5.2- and 20.4-fold the rate of decolorization with AQDS and LAW, respectively, compared to the control lacking quinoid compounds.


Assuntos
Antraquinonas/toxicidade , Compostos Azo/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Naftoquinonas/toxicidade , Anaerobiose , Biocombustíveis , Catálise , Corantes , Oxirredução
2.
Sci Total Environ ; 488-489: 176-87, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24830930

RESUMO

Arsenic (As) is a metalloid that may represent a serious environmental threat, due to its wide abundance and the high toxicity particularly of its inorganic forms. The use of arsenic-contaminated groundwater for irrigation purposes in crop fields elevates the arsenic concentration in topsoil and its phytoavailability for crops. The transfer of arsenic through the crops-soil-water system is one of the more important pathways of human exposure. According to the Food and Agriculture Organization of the United Nations, maize (Zea mays L.) is the most cultivated cereal in the world. This cereal constitutes a staple food for humans in the most of the developing countries in Latin America, Africa, and Asia. Thus, this review summarizes the existing literature concerning the conditions involved in agricultural soil that leads to As influx into maize crops and the uptake mechanisms, metabolism and phytotoxicity of As in corn plants. Additionally, the studies of the As accumulation in raw corn grain and corn food are summarized, and the As biotransfer into the human diet is highlighted. Due to high As levels found in editable plant part for livestock and humans, the As uptake by corn crop through water-soil-maize system may represent an important pathway of As exposure in countries with high maize consumption.


Assuntos
Arsênio/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Agricultura , Produtos Agrícolas/metabolismo , Contaminação de Alimentos/estatística & dados numéricos , Solo/química
3.
J Environ Manage ; 125: 117-25, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23651918

RESUMO

When producing activated carbons from agricultural by-products, certain properties, such as yield and specific surface area, are very important for obtaining an economical and promising adsorbent material. Nevertheless, many researchers have not simultaneously optimized these properties and have obtained different optimal conditions for the production of activated carbon that either increases specific surface area but decreases yield or vice versa. In this research, the production of activated carbon from barley husks (BH) by chemical activation with zinc chloride was optimized by using a 2(3) factorial design with replicates at the central point, followed by a central composite design with two responses (the yield and iodine number) and three factors (the activation temperature, activation time, and impregnation ratio). Both responses were simultaneously optimized by using the desirability functions approach to determine the optimal conditions of this process. The findings reveal that after the simultaneous dual optimization, the maximal response values were obtained at an activation temperature of 436 °C, an activation time of 20 min, and an impregnation ratio of 1.1 g ZnCl2/g BH, although the results after the single optimization of each response were quite different. At these conditions, the predicted values for the iodine number and yield were 829.58 ± 78.30 mg/g and 46.82 ± 2.64%, respectively, whereas experimental tests produced values of 901.86 mg/g and 48.48%, respectively. Moreover, activated carbons from BH obtained at the optimal conditions primarily developed a porous structure (mesopores > 71% and micropores > 28%), achieving a high surface area (811.44 m(2)/g) that is similar to commercial activated carbons and lignocellulosic-based activated carbons. These results imply that the pore width and surface area are large enough to allow the diffusion and adsorption of pollutants inside the adsorbent particles. In summary, two responses were optimized to determine the optimal conditions for the production of activated carbons because it is possible to increase both the specific surface area and yield.


Assuntos
Carvão Vegetal , Hordeum , Cloretos/química , Iodo/química , Compostos de Zinco/química
4.
Environ Technol ; 33(22-24): 2673-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23437668

RESUMO

The photocatalytic reduction of Cr(VI) from agricultural soil leachates irrigated with Cr(VI)-containing waste hydroponic solution was evaluated in this work. For this purpose, zinc oxide was used as a catalyst under UV irradiation (lambda = 365 nm). The reduction of Cr(VI) was preliminarily evaluated on synthetic solutions with a concentration of 15 mg L(-1) to optimize the catalyst loading and the solution pH and to determine the effect of organic matter. Greater removal of Cr(VI) was observed at pH 7, and the optimum catalyst loading was found to be 2 g L(-1), which achieved an 84% Cr(VI) reduction in 6 h. The influence of dissolved organic matter on the reduction of Cr(VI) was evaluated through the addition of different concentrations of humic acid (HA) to the chromium solution. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased from 0 to 14 mg L(-1). The percentage of hexavalent chromium reduction from soil leachates was in the range of 13-99%, and the rate constant was significantly enhanced by the presence of organic compounds in the soil pore water. Thus, a marked synergistic effect between the photocatalytic reduction of Cr(VI) and the organic matter in soil (e.g. humic substances) was observed in real samples and was similar to that observed in the Cr(VI) synthetic solution that contained HA.


Assuntos
Agricultura , Cromo/química , Poluentes do Solo/química , Raios Ultravioleta , Óxido de Zinco/química , Catálise , Concentração de Íons de Hidrogênio , Oxirredução , Processos Fotoquímicos , Águas Residuárias
5.
Water Sci Technol ; 63(5): 977-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21411949

RESUMO

An artificial neural network (ANN) was used to predict the biosorption of methylene blue on Spirulina sp. biomass. Genetic and anneal algorithms were tested with different quantity of neurons at the hidden layers to determine the optimal neurons in the ANN architecture. In addition, sensitivity analyses were conducted with the optimised ANN architecture for establishing which input variables (temperature, pH, and biomass dose) significantly affect the predicted data (removal efficiency or biosorption capacity). A number of isotherm models were also compared with the optimised ANN architecture. The removal efficiency or the biosorption capacity of MB on Spirulina sp. biomass was adequately predicted with the optimised ANN architecture by using the genetic algorithm with three input neurons, and 20 neurons in each one of the two hidden layers. Sensitivity analyses demonstrated that initial pH and biomass dose show a strong influence on the predicted removal efficiency or biosorption capacity, respectively. When supplying two variables to the genetic algorithm, initial pH and biomass dose improved the prediction of the output neuron (biosorption capacity or removal efficiency). The optimised ANN architecture predicted the equilibrium data 5,000 times better than the best isotherm model. These results demonstrate that ANN can be an effective way of predicting the experimental biosorption data of MB on Spirulina sp. biomass.


Assuntos
Azul de Metileno/química , Redes Neurais de Computação , Spirulina/química , Poluentes Químicos da Água/química , Adsorção , Biomassa , Modelos Biológicos
6.
Water Sci Technol ; 53(11): 197-204, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16862790

RESUMO

The biodegradation kinetics of BTE-oX and MTBE, mixed all together in the presence of diesel-grown bioaugmented bacterial populations as high as 885 mg/L VSS, was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 54 h, every 6 h. All BTE-oX chemicals followed a first-order two-phase biodegradation kinetic model, whereas MTBE followed a zero-order removal kinetic model in all samples. BTE-oX removal rates were much higher than those of MTBE in all samples. The presence of soil in aqueous samples retarded BTE-oX and MTBE removal rates. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged between 64.8-98.9% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged between 18.7-40.8% and 7.2-10.3%, respectively.


Assuntos
Derivados de Benzeno/análise , Benzeno/análise , Biodegradação Ambiental , Gasolina , Éteres Metílicos/análise , Tolueno/análise , Purificação da Água/métodos , Xilenos/análise , Biomassa , Reatores Biológicos , Biotransformação , Cinética , Poluentes do Solo , Fatores de Tempo
7.
Water Sci Technol ; 52(8): 107-15, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16312957

RESUMO

The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of 905 mg/L VSS of BTEX-acclimated biomass was evaluated. Effects of soil and Tergitol NP-10 in aqueous samples on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. MTBE biodegradation followed a first-order one-phase kinetic model in all samples, whereas benzene, toluene and ethylbenzene biodegradation followed a first-order two-phase kinetic model in all samples. O-xylene biodegradation followed a first-order two-phase kinetic model in the presence of biomass only. Interestingly, o-xylene biodegradation was able to switch to a first-order one-phase kinetic model when either soil or soil and Tergitol NP-10 were added. The presence of soil in aqueous samples retarded benzene, toluene and ethylbenzene removal rates. O-xylene and MTBE removal rates were enhanced by soil. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged 77-99.8% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged 50.1-65.3% and 9.9-43.0%, respectively.


Assuntos
Derivados de Benzeno/metabolismo , Éteres Metílicos/metabolismo , Poloxaleno/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/análise , Tensoativos/metabolismo , Biodegradação Ambiental , Cinética , Modelos Teóricos
8.
Water Sci Technol ; 50(5): 85-92, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15497834

RESUMO

The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of bioaugmented bacterial populations as high as 880 mg/L VSS was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. Benzene and o-xylene biodegradation followed a first-order one-phase kinetic model, whereas toluene and ethylbenzene biodegradation was well described by a first-order two-phase kinetic model in all samples. MTBE followed a zero-order removal kinetic model in all samples. The presence of soil in aqueous samples retarded BTE-oX removal rates, with the highest negative effect on o-xylene. The presence of soil enhanced MTBE removal rate. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged from 95.4-99.7% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged from 55.9-90.1% and 15.6-30.1%, respectively.


Assuntos
Derivados de Benzeno/metabolismo , Benzeno/metabolismo , Éteres Metílicos/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , Biodegradação Ambiental , Bioensaio , Biomassa , Biotransformação , Cinética , Modelos Biológicos , Poloxaleno/farmacologia , Microbiologia do Solo , Esterilização , Poluição Química da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA