Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(27): eadh3058, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418530

RESUMO

Large orogenic plateaus, such as the Tibetan Plateau, are characterized by high-elevation, low-relief topography, in contrast to the rugged terrains of narrower mountain belts. A key question is how low-elevation hinterland basins, characteristic of broad regions of shortening, were raised while regional relief was flattened. This study uses the Hoh Xil Basin in north-central Tibet as an analogue for late-stage orogenic plateau formation. The precipitation temperatures of lacustrine carbonates deposited between ~19 and ~12 million years ago record an early to middle Miocene phase of surface uplift of 1.0 ± 0.7 km. The results of this study demonstrate the contribution of sub-surface geodynamic processes in driving regional surface uplift and redistribution of crustal material to flatten plateau surfaces during the late stage of orogenic plateau formation.


Assuntos
Fósseis , Tibet , Temperatura
2.
Nat Commun ; 13(1): 3977, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803935

RESUMO

Periodic wetting is an inherent feature of many monsoon marginal region deserts. Previous studies consistently demonstrate desert wetting during times of Earth's high orbital eccentricity and strong summer monsoon. Here we report the first evidence demonstrating desert wetting during Earth's low orbital eccentricity from the late Miocene strata of the northwestern Tarim Basin of northern China, which is commonly thought to be beyond the range of Asian monsoon precipitation. Using mechanisms for modern Tarim wetting as analogs, we propose that East Asian summer monsoon weakening enhanced westward moisture transport and caused opposite desert wetting pattern to that observed in monsoon marginal region deserts. This inference is supported by our model simulations. This result has far-reaching implications for understanding environmental variations in non-monsoonal deserts in the next few thousands of years under high atmospheric CO2 content and low eccentricity.


Assuntos
Estações do Ano , China
3.
Nat Commun ; 13(1): 1329, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288572

RESUMO

Estimates of the permafrost-climate feedback vary in magnitude and sign, partly because permafrost carbon stability in warmer-than-present conditions is not well constrained. Here we use a Plio-Pleistocene lacustrine reconstruction of mean annual air temperature (MAAT) from the Tibetan Plateau, the largest alpine permafrost region on the Earth, to constrain past and future changes in permafrost carbon storage. Clumped isotope-temperatures (Δ47-T) indicate warmer MAAT (~1.2 °C) prior to 2.7 Ma, and support a permafrost-free environment on the northern Tibetan Plateau in a warmer-than-present climate. Δ47-T indicate ~8.1 °C cooling from 2.7 Ma, coincident with Northern Hemisphere glacial intensification. Combined with climate models and global permafrost distribution, these results indicate, under conditions similar to mid-Pliocene Warm period (3.3-3.0 Ma), ~60% of alpine permafrost containing ~85 petagrams of carbon may be vulnerable to thawing compared to ~20% of circumarctic permafrost. This estimate highlights ~25% of permafrost carbon and the permafrost-climate feedback could originate in alpine areas.


Assuntos
Pergelissolo , Carbono/análise , Clima , Região dos Alpes Europeus , Temperatura
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169079

RESUMO

The onset of mountain building along margins of the Tibetan Plateau provides a key constraint on the processes by which the high topography in Eurasia formed. Although progressive expansion of thickened crust underpins most models, several studies suggest that the northern extent of the plateau was established early, soon after the collision between India and Eurasia at ca. 50 Ma. This inference relies heavily on the age and provenance of Cenozoic sediments preserved in the Qaidam basin. Here, we present evidence in the northern plateau for a considerably younger inception and evolution of the Qaidam basin, based on magnetostratigraphies combined with detrital apatite fission-track ages that date the basin fills to be from ca. 30 to 4.8 Ma. Detrital zircon-provenance analyses coupled with paleocurrents reveal that two-stage growth of the Qilian Shan in the northeastern margin of the Tibetan Plateau began at ca. 30 and at 10 Ma, respectively. Evidence for ca. 30 and 10 to 15 Ma widespread synchronous deformation throughout the Tibetan Plateau and its margins suggests that these two stages of outward growth may have resulted from the removal of mantle lithosphere beneath different portions of the Tibetan Plateau.

6.
Sci Adv ; 4(2): eaao6977, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29487907

RESUMO

Theories of late Cenozoic climate cooling assume that central Asian aridification and high dust accumulation rates in the Chinese Loess Plateau and the North Pacific Ocean are genetically related. On the basis of detailed sediment provenance analysis, we show that high dust accumulation rates in the Chinese Loess Plateau and the North Pacific Ocean during the late Miocene-Pliocene were mainly caused by increased erosion in the Qilian Mountains and low-elevation eastern Asia areas, driven by the effects of East Asian summer monsoon intensification. We conclude that precipitation-driven erosion increased dust input to the North Pacific Ocean and may have played a pivotal role in late Cenozoic climate cooling.

7.
Sci Adv ; 3(3): e1600762, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435857

RESUMO

East Asian summer monsoon (EASM) precipitation received by northern China over the past 800 thousand years (ky) is characterized by dominant 100-ky periodicity, mainly attributed to CO2 and Northern Hemisphere insolation-driven ice sheet forcing. We established an EASM record in the Late Miocene from lacustrine sediments in the Qaidam Basin, northern China, which appears to exhibit a dominant 100-ky periodicity similar to the EASM records during the Late Quaternary. Because evidence suggests that partial or ephemeral ice existed in the Northern Hemisphere during the Late Miocene, we attribute the 100-ky cycles to CO2 and Southern Hemisphere insolation-driven Antarctic ice sheet forcing. This indicates a >6-million year earlier onset of the dominant 100-ky Asian monsoon and, likely, glacial and CO2 cycles and may indicate dominant forcing of Northern Hemisphere climate by CO2 and Southern Hemisphere ice sheets in a warm world.

8.
Sci Rep ; 6: 27508, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272610

RESUMO

The Lhasa terrane is a key region for understanding the paleoelevation of the southern Tibetan Plateau after India-Asia collision. The Gerze Basin, located in the northern part of the Lhasa terrane, is a shortening-related basin. We discovered Lagena laevis (Bandy) fossils in upper Eocene strata of the Gerze Basin. This type of foraminifera is associated with lagoon and estuarine environments, indicating that the northern part of the Lhasa terrane was near sea level during the late Eocene. We speculate that these foraminifera were transported inland by storm surges to low elevation freshwater lakes during times of marine transgressions. This inference is consistent with the relatively positive δ(18)O values in carbonate from the same deposits that indicate low palaeoelevations close to sea level. Considering the palaeoelevation results from the nearby Oligocene basins at a similar latitude and the volcanic history of the Lhasa terrane, we infer that large-magnitude surface uplift of the northern Lhasa terrane occurred between late Eocene and late Oligocene time.


Assuntos
Foraminíferos , Fósseis , Isótopos/análise , Altitude , China , Geografia , Água
9.
Science ; 320(5881): 1304-7, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18535236

RESUMO

The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle.

10.
Science ; 311(5760): 511-5, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16439658

RESUMO

The elevation of Earth's surface is among the most difficult environmental variables to reconstruct from the geological record. Here we describe an approach to paleoaltimetry based on independent and simultaneous determinations of soil temperatures and the oxygen isotope compositions of soil waters, constrained by measurements of abundances of 13C-18O bonds in soil carbonates. We use this approach to show that the Altiplano plateau in the Bolivian Andes rose at an average rate of 1.03 +/- 0.12 millimeters per year between approximately 10.3 and approximately 6.7 million years ago. This rate is consistent with the removal of dense lower crust and/or lithospheric mantle as the cause of elevation gain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...