Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 91(20): 205002, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14683368

RESUMO

A pellet penetrating the inner region of a tokamak discharge, where the safety factor drops below unity, triggers an instability analogous to a sawtooth crash. Because of the simultaneity of the crash and pellet crossing, the latter is an appropriate probe for investigating the current distribution during reconnection. In this Letter, pellet deflection is used to characterize the associated electron distribution function. The perturbation compatible with the observed trajectory requires a negative current layer on the q=1 magnetic surface between 3 and 12 times the equilibrium current density and an expulsion of high energy electrons from the plasma core.

2.
Phys Rev Lett ; 91(3): 035001, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12906422

RESUMO

Particle transport in magnetized plasmas is investigated with a fluid model of drift wave turbulence. An analytical calculation shows that magnetic field curvature and thermodiffusion drive an anomalous pinch. The curvature driven pinch velocity is consistent with the prediction of turbulence equipartition theory. The thermodiffusion flux is found to be directed inward for a small ratio of electron to ion pressure gradient, and it reverses its sign when increasing this ratio. Numerical simulations confirm that a turbulent particle pinch exists. It is mainly driven by curvature for equal ion and electron heat sources. The sign and relative weights of the curvature and thermodiffusion pinches are consistent with the analytical calculation.

3.
Phys Rev Lett ; 84(24): 5532-5, 2000 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-10990987

RESUMO

In reversed-field pinches, two different mechanisms have been proposed to explain the dynamo process which drives the poloidal current needed to sustain the magnetic configuration: the kinetic dynamo theory and the magnetohydrodynamic (MHD) dynamo theory. Experimentally, they can be distinguished by the radial behavior of the electron distribution function. In this Letter the trajectory deflection of frozen hydrogen pellets has been used as a diagnostic of suprathermal electrons in the plasma. The classical Spitzer-Harm distortion of the electron distribution function consistent with the MHD dynamo electric field is found to give a better modeling of the pellet trajectory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA