Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207658

RESUMO

Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.

2.
Appl Opt ; 60(13): 3753-3763, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983308

RESUMO

OrganiCam is a laser-induced luminescence imager and spectrometer designed for standoff organic and biosignature detection on planetary bodies. OrganiCam uses a diffused laser beam (12° cone) to cover a large area at several meters distance and records luminescence on half of its intensified detector. The diffuser can be removed to record Raman and fluorescence spectra from a small spot from 2 m standoff distance. OrganiCam's small size and light weight makes it ideal for surveying organics on planetary surfaces. We have designed and built a brassboard version of the OrganiCam instrument and performed initial tests of the system.

3.
Astrobiology ; 16(9): 715-29, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27623200

RESUMO

UNLABELLED: We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm(2) area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers. In addition, the luminescence decay time of biogenic compounds is much shorter (<100 ns) than the micro- to millisecond decay time of transition metal ions and rare-earth ions in minerals and rocks. The Standoff Biofinder takes advantage of the short lifetime of biofluorescent materials to obtain real-time fluorescence images that show the locations of biological materials among luminescent minerals in a geological context. The Standoff Biofinder instrument will be useful for locating biological material during future NASA rover, lander, and crewed missions. Additionally, the instrument can be used for nondestructive detection of biological materials in unique samples, such as those obtained by sample return missions from the outer planets and asteroids. The Standoff Biofinder also has the capacity to detect microbes and bacteria on space instruments for planetary protection purposes. KEY WORDS: Standoff Biofinder-Luminescence-Time-resolved fluorescence-Biofluorescence-Planetary exploration-Planetary protection-Noncontact nondestructive biodetection. Astrobiology 16, 715-729.


Assuntos
Exobiologia/instrumentação , Exobiologia/métodos , Meio Ambiente Extraterreno , Planetas , Regiões Antárticas , Bactérias , Contaminação de Equipamentos , Fluorescência , Fósseis , Lasers , Análise Espectral Raman , Fatores de Tempo
4.
Appl Spectrosc ; 69(2): 173-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25587811

RESUMO

In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 µm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

5.
Appl Spectrosc ; 68(12): 1393-406, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25356745

RESUMO

We propose a robust technique called Savitzky-Golay second-derivative (SGSD) fitting for modeling the in situ Raman spectrum of graphitic materials in rock samples such as carbonaceous chondrite meteorites. In contrast to non-derivative techniques, with assumed locally linear or nth-order polynomial fluorescence backgrounds, SGSD produces consistently good fits of spectra with variable background fluorescence of any slowly varying form, without fitting or subtracting the background. In combination with a Monte Carlo technique, SGSD calculates Raman parameters (such as peak width and intensity) with robust uncertainties. To explain why SGSD fitting is more accurate, we compare how different background subtraction techniques model the background fluorescence with the wide and overlapping peaks present in a real Raman spectrum of carbonaceous material. Then, the utility of SGSD is demonstrated with a set of real and simulated data compared to commonly used linear background techniques. Researchers may find the SGSD technique useful if their spectra contain intense background interference with unknown functional form or wide overlapping peaks, and when the uncertainty of the spectral data is not well understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...