Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(3): 826-833, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35952382

RESUMO

During May 2016, severe blight symptoms were observed in several raspberry and blackberry fields in Serbia. In total, 22 strains were isolated: 16 from symptomatic raspberry shoots, 2 from asymptomatic raspberry leaves, and 4 from symptomatic blackberry shoots. Additionally, eight raspberry strains, isolated earlier from two similar outbreaks, were included in the study. Pathogenicity of the strains was confirmed on detached raspberry and blackberry shoots by reproducing the symptoms of natural infection. The strains were Gram-negative, fluorescent on King's medium B, ice nucleation positive, and utilized glucose oxidatively. All strains were levan positive, oxidase negative, nonpectolytic, arginine dihydrolase negative, and induced hypersensitivity in tobacco leaves (LOPAT + - - - +, Pseudomonas group Ia). Furthermore, all strains liquefied gelatin and hydrolyzed aesculin but did not show tyrosinase activity or utilize tartrate (GATTa + + - -). Tentative identification using morphology, LOPAT, GATTa, and ice-nucleating ability tests suggested that isolated strains belong to Pseudomonas syringae. The syrB gene associated with syringomycin production was detected in all strains. DNA fingerprints with REP, ERIC, and BOX primers generated identical profiles for 29 strains, except for strain KBI 222, which showed a unique genomic fingerprint. In all, 9 of 10 selected strains exhibited identical sequences of four housekeeping genes: gyrB, rpoD, gapA, and gltA. Five nucleotide polymorphisms were found in strain KBI 222 at the rpoD gene locus only. In the phylogenetic tree based on a concatenated sequence of all four housekeeping genes, strains clustered within phylogroup 2 (i.e., genomospecies 1) of the P. syringae species complex, with pathotype strains of P. syringae pv. aceris and P. syringae pv. solidagae as their closest relatives. There was no correlation between genotype and geographic origin, particular outbreak, host, or cultivar.


Assuntos
Pseudomonas syringae , Rubus , Filogenia , Sérvia , Gelo , Doenças das Plantas
2.
Front Plant Sci ; 13: 1055186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507448

RESUMO

Serious outbreaks of walnut deep bark canker were observed on young walnut trees (Juglans regia L.) in two localities in the northern part of Serbia during 2020. From the symptomatic walnut tissues, two types of bacterial colonies were isolated, predominantly, light cream, circular and smooth colonies, as well as small, yellowish, mucoid and convex ones. PCR analysis and phenotypic assays suggested that the former group belongs to Brenneria spp., while the latter isolates were identified as Xanthomonas arboricola pv. juglandis. Within the Brenneria group, two strains were identified as Brenneria nigrifluens, while other 15 strains did not belong to any Brenneria species described so far. Therefore, we selected four representative strains of the unknown Brenneria sp. and subjected them to polyphasic analysis. As expected, in a phylogenetic tree based on partial 16S rDNA sequences, four novel strains grouped with other Brenneria representatives, and showed close phylogenetic relationship to Brenneria salicis. Furthermore, multilocus sequence analysis (MLSA) based on the partial sequences of atpD, gyrB, infB and rpoB housekeeping genes and core-genome phylogeny indicated that the studied strains form a novel and a clearly separate Brenneria lineage. Overall genome relatedness indices showed that they represent a new Brenneria species. The new species can be differentiated from the other Brenneria spp. infecting walnut and closely related B. salicis strains based on phenotypic characteristics, as well. Moreover, the pathogenicity tests on two-year-old walnut plants proved the ability of strains to cause necrosis and longitudinal black lesions and cracks on the trunk and branches of walnut trees. Overall, polyphasic characterization showed that the studied strains isolated from walnut with symptoms of deep bark canker represent a novel species of the genus Brenneria for which the name Brenneria izbisi sp. nov. is proposed. The type strain of B. izbisi is KBI 423T (= CFBP 9035T = LMG 32479T). To facilitate rapid identification of newly described species, a conventional PCR protocol and primers targeting the putative gene hrpP, were developed. Further study should reveal the potential role of each pathogen isolated from symptomatic walnut in disease development as well as possible interaction between them.

3.
Methods Mol Biol ; 2536: 231-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819608

RESUMO

The accurate assessment of Erwinia amylovora live cell populations in fire blight cankers by classic microbiology methods has major limitations. Some of them are the presence of competitive microbiota in samples that inhibit E. amylovora's growth and the release of toxic compounds by plant material during sample processing, which may hamper the pathogen's ability to form colonies on solid media. Digital PCR (dPCR) combined with the photo-reactive DNA-binding dye propidium monoazide (PMA) allows selective detection and quantification of live E. amylovora cells in woody samples while overcoming the constraints of culture-dependent methods. This work describes a reliable viability dPCR procedure to determine E. amylovora live cell concentrations in fire blight cankers from pome fruit trees. This protocol can be adapted for the analysis of other types of plant material and enables investigation of ecological, epidemiological, and management significance of cankers as a relatively underexplored part of the fire blight disease cycle.


Assuntos
Erwinia amylovora , Erwinia amylovora/genética , Frutas/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Árvores
4.
Microorganisms ; 9(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068401

RESUMO

Xanthomonads, members of the family Xanthomonadaceae, are economically important plant pathogenic bacteria responsible for infections of over 400 plant species. Bacteriophage-based biopesticides can provide an environmentally friendly, effective solution to control these bacteria. Bacteriophage-based biocontrol has important advantages over chemical pesticides, and treatment with these biopesticides is a minor intervention into the microflora. However, bacteriophages' agricultural application has limitations rooted in these viruses' biological properties as active substances. These disadvantageous features, together with the complicated registration process of bacteriophage-based biopesticides, means that there are few products available on the market. This review summarizes our knowledge of the Xanthomonas-host plant and bacteriophage-host bacterium interaction's possible influence on bacteriophage-based biocontrol strategies and provides examples of greenhouse and field trials and products readily available in the EU and the USA. It also details the most important advantages and limitations of the agricultural application of bacteriophages. This paper also investigates the legal background and industrial property right issues of bacteriophage-based biopesticides. When appropriately applied, bacteriophages can provide a promising tool against xanthomonads, a possibility that is untapped. Information presented in this review aims to explore the potential of bacteriophage-based biopesticides in the control of xanthomonads in the future.

5.
Front Microbiol ; 12: 803789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185829

RESUMO

Bacterial fruit blotch and seedling blight, caused by Acidovorax citrulli, is one of the most destructive diseases of melon and watermelon in many countries. Pathogen-free seed and cultural practices are major pillars of the disease control. However, use of bacteriophages as natural biocontrol agents might also contribute to the disease management. Therefore, we isolated 12 bacteriophages specific to A. citrulli, from phyllosphere and rhizosphere of diseased watermelon plants. The phage strains were characterized based on their host range, plaque and virion morphology, thermal inactivation point, adsorption rate, one step growth curve, restriction fragment length polymorphism (RFLP), and genomic analysis. Transmission electron microscopy of three phage strains indicated that they belong to the order Caudovirales, family Siphoviridae. All phages lysed 30 out of 32 tested A. citrulli strains isolated in Serbia, and did not lyse other less related bacterial species. They produced clear plaques, 2 mm in diameter, on bacterial lawns of different A. citrulli strains after 24 h of incubation. The thermal inactivation point was 66 or 67°C. They were stable at pH 5-9, but were sensitive to chloroform and inactivated in either 5 or 10 min exposure to ultraviolet (UV) light. RFLP analysis using EcoRI, BsmI and BamHI enzymes did not show genetic differences among the tested phages. Adsorption rate and one step growth curve were determined for the Acidovorax phage ACF1. Draft genome sequence of the ACF1 phage was 59.377 bp in size, with guanine-cytosine (GC) content 64.5%, including 89 open reading frames. This phage shared a very high genomic identity with Acidovorax phage ACPWH, isolated in South Korea. Evaluation of systemic nature of ACF1 strain showed that it can be absorbed by roots and translocated to upper parts of watermelon plants where it survived up to 10 days.

6.
Plant Dis ; 104(3): 656-667, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31961769

RESUMO

Talaromyces minioluteus is one of the important species of genus Talaromyces, which has cosmopolitan distribution and is encountered on a wide range of different habitats. This species has not been considered as an important plant pathogen, even though it has been isolated from various plant hosts. Fruits and vegetables with Penicillium-like mold symptoms were collected from 2015 to 2017 from markets in Serbia. Isolates originating from quince, tomato, and orange fruits, onion bulbs, and potato tubers were identified and characterized on a morphological, physiological, and molecular level. Morphological and physiological examination included observing micromorphology, testing growth on six different media and at five different temperatures, and production of three enzymes. Molecular identification and characterization were performed using four molecular markers: internal transcribed spacer, ß-tubulin, calmodulin, and DNA-dependent RNA polymerase II second largest subunit. The results of morphological and molecular analyses were in agreement, and they proved that the obtained isolates are T. minioluteus. In the pathogenicity assay, T. minioluteus was confirmed as a pathogen of all species tested with the exception of potato tubers. This is the first report of T. minioluteus as a postharvest plant pathogen on quince, tomato, and orange fruit and onion bulbs. Also, this is the first record of T. minioluteus in Serbia.


Assuntos
Penicillium , Talaromyces , Frutas , Sérvia , Tubulina (Proteína)
7.
Front Microbiol ; 9: 2021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210484

RESUMO

Xanthomonas euvesicatoria phage KΦ1, a member of Myoviridae family, was isolated from the rhizosphere of pepper plants showing symptoms of bacterial spot. The phage strain expressed antibacterial activity to all X. euvesicatoria strains tested and did not lyse other Xanthomonas spp., nor other less related bacterial species. The genome of KΦ1 is double-stranded DNA of 46.077 bp including 66 open reading frames and an average GC content of 62.9%, representing the first complete genome sequence published for a phage infecting xanthomonads associated with pepper or tomato. The highest genome similarity was observed between phage KΦ1 and the Xanthomonas oryzae pv. oryzae specific phage OP2. On the other hand, when compared with other members of the genus Bcep78virus, the genome similarity was lower. Forty-four (67%) predicted KΦ1 proteins shared homology with Xanthomonas phage OP2, while 20 genes (30%) were unique to KΦ1. Phage KΦ1, which is chloroform resistant and stable in different media and in the pH range 5-11, showed a high titer storage ability for at least 2 years at +4°C. Copper-hydroxide and copper-oxychloride reduced phage activity proportionally to the used concentrations and the exposure time. UV light was detrimental to the phage strain, but skim milk plus sucrose formulation extended its survival in vitro. The phages survived for at least 7 days on the surface of pepper leaves in the greenhouse, showing the ability to persist on the plant tissue without the presence of the host bacterium. Results of three repeated experiments showed that foliar applications of the unformulated KΦ1 phage suspension effectively controlled pepper bacterial spot compared to the standard treatment and the untreated control. The integration of the phage KΦ1 and copper-hydroxide treatments resulted in an increased efficacy compared to the copper-hydroxide alone.

8.
Genome Announc ; 3(2)2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25908139

RESUMO

Tumorigenic strains of Agrobacterium spp. are responsible for crown gall disease of numerous plant species. We present here draft genome sequences of nonpathogenic Agrobacterium nepotum strain 39/7(T) (CFBP 7436(T), LMG 26435(T)), isolated from crown gall tumor on Prunus cerasifera, and tumorigenic Agrobacterium sp. strain KFB 330 (CFBP 8308, LMG 28674), isolated from galls on raspberry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...