Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 6(17): 11614-11627, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056317

RESUMO

Nanocomposite hydrogels are attracting significant interest due to their potential use in drug delivery systems and tissue scaffolds. Stimuli-responsive hydrogel nanocomposites are of particular interest due to sustained release of therapeutic agents from the hydrogel. However, challenges such as controlled release of therapeutic agents exist because of limited understanding of the interactions between the therapeutic agent and the hydrogel. To investigate the interaction, we synthesize a hydrogel nanocomposite by crosslinking the hydrogel precursors (tetrazine-modified polyethylene glycol and norbornene-modified hyaluronic acid) using click chemistry while bovine serum albumin-capped silver nanoparticles were encapsulated in situ in the matrix. The interaction between the nanoparticles and the hydrogel was studied by a combination of spectroscopic techniques. X-ray photoelectron spectroscopy results suggest that the hydrogel molecule rearranges so that polyethylene glycol is pointing up toward the surface while hyaluronic acid folds to interact with bovine serum albumin of the nanoparticles. Hyaluronic acid, facing inward, may interact with the nanoparticle via hydrogen bonding. The hydrogel nanocomposite showed antibacterial activity against Gram-positive/Gram-negative bactericides, supporting time-based nanoparticle release results. Our findings about interactions between the nanoparticles and the hydrogel can be useful in the formulation of next generation of hydrogel nanocomposites.

3.
J Vac Sci Technol A ; 38(6): 063208, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33281279

RESUMO

We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.

4.
Proc Natl Acad Sci U S A ; 117(26): 14712-14720, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554498

RESUMO

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C-S and O-S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g-1 (based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg-1 The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31579351

RESUMO

Over the past three decades, the widespread utility and applicability of X-ray photoelectron spectroscopy (XPS) in research and applications has made it the most popular and widely used method of surface analysis. Associated with this increased use has been an increase in the number of new or inexperienced users which has led to erroneous uses and misapplications of the method. This article is the first in a series of guides assembled by a committee of experienced XPS practitioners that are intended to assist inexperienced users by providing information about good practices in the use of XPS. This first guide outlines steps appropriate for determining whether XPS is capable of obtaining the desired information, identifies issues relevant to planning, conducting and reporting an XPS measurement, and identifies sources of practical information for conducting XPS measurements. Many of the topics and questions addressed in this article also apply to other surface-analysis techniques.

7.
Nat Chem ; 11(9): 789-796, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31427766

RESUMO

The importance of the solid-electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10-6 S cm-1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated.

8.
Angew Chem Int Ed Engl ; 57(28): 8567-8571, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29791780

RESUMO

Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li3 PS4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB.

9.
Proc Natl Acad Sci U S A ; 115(9): 2004-2009, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440381

RESUMO

Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g-1 at 0.5 C (corresponding to current density of 95 mA g-1) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

10.
Angew Chem Int Ed Engl ; 55(34): 9898-901, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27417442

RESUMO

Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.

11.
Anal Chem ; 88(10): 5152-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27058399

RESUMO

Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited.

12.
Langmuir ; 32(17): 4370-81, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27055091

RESUMO

Polydopamine coatings are of interest due to the fact that they can promote adhesion to a broad range of materials and can enable a variety of applications. However, the polydopamine-substrate interaction is often noncovalent. To broaden the potential applications of polydopamine, we show the incorporation of 3-aminopropyltriethoxysilane (APTES), a traditional coupling agent capable of covalent bonding to a broad range of organic and inorganic surfaces, into polydopamine coatings. High energy X-ray photoelectron spectroscopy (HE-XPS), conventional XPS, near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), and ellipsometry measurements were used to investigate changes in coating chemistry and thickness, which suggest covalent incorporation of APTES into polydopamine. These coatings can be deposited either in Tris buffer or by using an aqueous APTES solution as a buffer without Tris. APTES-dopamine hydrochloride deposition from solutions with molar ratios between 0:1 and 10:1 allowed us to control the coating composition across a broad range.

13.
Adv Mater ; 27(23): 3473-83, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25925023

RESUMO

A single-material battery is prepared using Li10GeP2S12 as the electrolyte, anode, and cathode, based on the Li-S and Ge-S components in Li10GeP2S12 acting as the active centers for its cathode and anode performance, respectively. The single-Li10GeP2S12 battery exhibits a remarkably low interfacial resistance due to the improvement of interfacial contact and interactions, and the suppression of interfacial strain/stress.

14.
Dalton Trans ; 44(3): 977-87, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25407994

RESUMO

Pt and PtSn intermetallic nanoparticle (NP) catalysts were grown directly on various reduced graphene oxide (rGO) supports and were characterized by a combination of X-ray photoelectron spectroscopic (XPS), Raman microscopy, transmission electron microscopy (TEM), and powder X-ray diffraction (XRD) studies. Electrochemical CO stripping and rotating disk electrochemical (RDE) experiments showed the four rGO-PtSn catalysts to be superior to the four rGO-Pt catalysts for CO and CO-H2 electrooxidation in acidic solutions regardless of the rGO support, in agreement with earlier reports on PtSn NP electrocatalysts. For the four rGO-Pt catalysts, the rGO support causes a 70 mV spread in CO oxidation peak potential (ΔEpeak) and a 200 mV spread in CO-H2 electrooxidation onset. The more oxygenated graphenes show the lowest CO oxidation potentials and the best CO tolerance. For the four rGO-PtSn intermetallic catalysts, a ∼160 mV spread in CO-H2 electrooxidation onset is observed. With the exception of the nitrogen-doped graphene (NGO), a similar trend in enhanced CO electrooxidation properties with increasing oxygen content in the rGO support is observed. The NGO-PtSn electrocatalyst was superior to the other rGO-PtSn catalysts and showed the largest improvement in CO tolerance relative to the pure Pt system. The origin of this enhancement appears to stem from the unique rGO-PtSn support interaction in this system. These results are discussed in the context of recent theoretical and experimental studies in the literature.

15.
Nano Lett ; 14(3): 1405-12, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24475938

RESUMO

Despite its importance in dictating electrochemical reversibility and cell chemistry kinetics, the solid electrolyte interphase (SEI) on graphitic anodes remains the least understood component in Li ion batteries due to its trace presence, delicate chemical nature, heterogeneity in morphology, elusive formation mechanism, and lack of reliable in situ quantitative tools to characterize it. This work summarizes our systematic approach to understand SEI live formation, via in situ electrochemical atomic force microscopy, which provides topographic images and quantitative information about the structure, hierarchy, and thickness of interphases as function of electrolyte composition. Complemented by an ex situ chemical analysis, a comprehensive and dynamic picture of interphase formation during the first lithiation cycle of the graphitic anode is described. This combined approach provides an in situ and quantitative tool to conduct quality control of formed interphases.

16.
Nano Lett ; 14(1): 139-47, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24283393

RESUMO

Atomic-layer-deposition (ALD) coatings have been increasingly used to improve battery performance. However, the electrochemical and mechanistic roles remain largely unclear, especially for ALD coatings on electrodes that undergo significant volume changes (up to 100%) during charging/discharging. Here we investigate an anode consisting of tin nanoparticles (SnNPs) with an ALD-Al2O3 coating. For the first time, in situ transmission electron microscopy unveiled the dynamic mechanical protection of the ALD-Al2O3 coating by coherently deforming with the SnNPs under the huge volume changes during charging/discharging. Battery tests in coin-cells further showed the ALD-Al2O3 coating remarkably boosts the cycling performance of the Sn anodes, comparing with those made of bare SnNPs. Chemomechanical simulations clearly revealed that a bare SnNP debonds and falls off the underlying substrate upon charging, and by contrast the ALD-Al2O3 coating, like ion-conductive nanoglue, robustly anchors the SnNP anode to the substrate during charging/discharging, a key to improving battery cycle performance.

17.
J Am Chem Soc ; 132(11): 3932-8, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20178323

RESUMO

The outer walls of double-walled carbon nanotubes (DWNTs) were selectively oxidized using a combination of oleum and nitric acid. Intercalation of oleum between bundled DWNTs enabled a homogeneous reaction by equally exposing all outer wall surfaces to the oxidants. At optimized reaction conditions, this double-wall chemistry enabled high water solubility through carboxylic acid functional groups introduced to the outer wall, while leaving the inner tube intact, as shown by Raman scattering and high resolution TEM. These outer wall selectively oxidized DWNTs retained electrical conductivity up to 65% better than thin films of similarly functionalized single-walled carbon nanotubes, which can be attributed to enhanced electrical percolation via the nonoxidized inner tubes.


Assuntos
Nanotubos de Carbono/química , Água/química , Eletricidade , Cinética , Fenômenos Mecânicos , Microscopia Eletrônica de Transmissão , Oxirredução , Solubilidade , Análise Espectral , Especificidade por Substrato , Temperatura
18.
Langmuir ; 25(1): 67-70, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19061314

RESUMO

Synthesis of cerium oxide nanocrystallites via precipitation using triethanolamine is reported. The molecular water associated with the cerium nitrate precursor is exploited to generate hydroxyl ions with the help of triethanolamine, facilitating precipitation. The small crystallite diameter (3 nm) in the as prepared powder is believed to result from the limited amount of water present. Solvent type has no effect on the final crystallite size or structure; however, it plays an important role in the dispersion of the nanoparticles with dispersity of the particles increasing with increasing carbon chain length of the solvent alcohol used.

19.
ACS Appl Mater Interfaces ; 1(11): 2624-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20356136

RESUMO

A flame synthesis method has been used to prepare nanosized, high-surface-area Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts from aqueous solutions of metal acetate precursors. The particles were formed by vaporization of the precursors followed by reaction and then gas to particle conversion. The specific surface areas of the synthesized powders ranged from 127 to 163 m(2)/g. High-resolution transmission electron microscope imaging showed that the particle diameters for the ceria materials are in the range of 3-10 nm, and a thin layer of amorphous material was observed on the surface of the particles. The presence and surface enrichment of the transition-metal oxides (CuO, NiO, and Fe(2)O(3)) on the ceria particles were detected using X-ray photoelectron spectroscopy. Electron energy-loss spectroscopic studies suggest the formation of a core-shell structure in the as-prepared particles. Extended X-ray absorption fine structure studies suggest that the dopants in all M-Ce-O systems are almost isostructural with their oxide counterparts, indicating the doping materials form separate oxide phases (CuO, Fe(2)O(3), NiO) within the host matrix (CeO(2)). Etching results confirm that most of the transition-metal oxides are present on the surface of CeO(2), easily dissolved by nitric acid. The performance of the flame-synthesized catalysts was examined toward water-gas shift (WGS) activity for fuel processing applications. The WGS activity of metal ceria catalysts decreases in the order Cu-Ce-O > Ni-Ce-O > Fe-Ce-O > CeO(2) with a feed mixture having a hydrogen to carbon monoxide (H(2)/CO) ratio of 1. There was no methane formation for these catalysts under the tested conditions.


Assuntos
Química Inorgânica/métodos , Gases/química , Nanopartículas/química , Óxidos/síntese química , Água/química , Catálise , Cério/química , Cobre/química , Elementos Químicos , Ferro/química , Nanopartículas/ultraestrutura , Níquel/química , Óxidos/química , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
20.
J Am Chem Soc ; 130(41): 13512-3, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18800792

RESUMO

We present a facile technique for the gray-scale chemical functionalization of polymer surfaces with high dynamic range. We demonstrate the use of this technique to create amine-functionalized substrates that are used for the patterned binding of fluorophores and the patterned synthesis of peptides. Studies of the behavior of the model organism Dictyostelium discoideum indicate the biocompatibility of the functionalized substrates.


Assuntos
Polímeros/química , Aminas/química , Animais , Cor , Dictyostelium/química , Dictyostelium/ultraestrutura , Microscopia Eletrônica , Estrutura Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...