Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7973): 299-302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558847

RESUMO

The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.


Assuntos
Meio Ambiente Extraterreno , Marte , Ciclo Hidrológico , Água , Argila/química , Meio Ambiente Extraterreno/química , Minerais/análise , Minerais/química , Sulfatos/análise , Sulfatos/química , Umidade , Água/análise , Origem da Vida , Exobiologia
3.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569848

RESUMO

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Assuntos
Meio Ambiente Extraterreno , Marte , Calibragem , Meio Ambiente Extraterreno/química , Minerais/análise , Análise Espectral Raman/métodos
4.
Nature ; 605(7911): 653-658, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364602

RESUMO

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

5.
Science ; 374(6568): 711-717, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34618548

RESUMO

Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.

6.
Space Sci Rev ; 216(8): 138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281235

RESUMO

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.

7.
Rev Sci Instrum ; 91(6): 063105, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611063

RESUMO

Near-infrared spectroscopy has become a well-known remote sensing technique for the surface characterization of planetary objects. Among them, Mars was observed in the past by three imaging spectrometers from orbit. The Infrared Spectrometer/SuperCam instrument performs near-infrared spectroscopy from the martian surface for the first time, with a 1.15 mrad field of view, in the 1.3 µm-2.6 µm range, enabling the identification of a variety of mafic and altered minerals. Before integration aboard the rover, the spectrometer underwent a calibration campaign. Here, we report the radiometric and linearity responses of the instrument, including the optical and thermal setups used to perform them over its nominal range of operations, in terms of instrument detector temperatures and spectral range. These responses were constrained by accuracy requirements (20% in absolute radiometry, 1% in relative). The derived instrument transfer function fits within these requirements (<15% in absolute and <0.8% in relative) and shall be used to calculate the expected instrumental signal-to-noise ratio for typical observation scenarios of mineral mixtures expected to be found in the Jezero crater, and ultimately to retrieve the spectral properties of the regions of interest observed by the rover.

8.
Geophys Res Lett ; 46(19): 10754-10763, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31894167

RESUMO

The Mars Science Laboratory Curiosity rover is traversing a sequence of stratified sedimentary rocks in Gale crater that contain varied eolian, fluviodeltaic, and lake deposits, with phyllosilicates, iron oxides, and sulfate salts. Here, we report the chloride salt distribution along the rover traverse. Chlorine is detected at low levels (<3 wt.%) in soil and rock targets with multiple MSL instruments. Isolated fine-scale observations of high chlorine (up to ≥15 wt.% Cl), detected using the ChemCam instrument, are associated with elevated Na2O and interpreted as halite grains or cements in bedrock. Halite is also interpreted at the margins of veins and in nodular, altered textures. We have not detected halite in obvious evaporitic layers. Instead, its scattered distribution indicates that chlorides emplaced earlier in particular members of the Murray formation were remobilized and reprecipitated by later groundwaters within Murray formation mudstones and in diagenetic veins and nodules.

9.
Sci Robot ; 2(7)2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33157897

RESUMO

Limitations on interplanetary communications create operations latencies and slow progress in planetary surface missions, with particular challenges to narrow-field-of-view science instruments requiring precise targeting. The AEGIS (Autonomous Exploration for Gathering Increased Science) autonomous targeting system has been in routine use on NASA's Curiosity Mars rover since May 2016, selecting targets for the ChemCam remote geochemical spectrometer instrument. AEGIS operates in two modes; in autonomous target selection, it identifies geological targets in images from the rover's navigation cameras, choosing for itself targets that match the parameters specified by mission scientists the most, and immediately measures them with ChemCam, without Earth in the loop. In autonomous pointing refinement, the system corrects small pointing errors on the order of a few milliradians in observations targeted by operators on Earth, allowing very small features to be observed reliably on the first attempt. AEGIS consistently recognizes and selects the geological materials requested of it, parsing and interpreting geological scenes in tens to hundreds of seconds with very limited computing resources. Performance in autonomously selecting the most desired target material over the last 2.5 kilometers of driving into previously unexplored terrain exceeds 93% (where ~24% is expected without intelligent targeting), and all observations resulted in a successful geochemical observation. The system has substantially reduced lost time on the mission and markedly increased the pace of data collection with ChemCam. AEGIS autonomy has rapidly been adopted as an exploration tool by the mission scientists and has influenced their strategy for exploring the rover's environment.

10.
Science ; 343(6169): 1244734, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324274

RESUMO

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Baías , Sulfato de Cálcio/análise , Sulfato de Cálcio/química , Cloro/análise , Cloro/química , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Halogênios/análise , Halogênios/química , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Magnésio/análise , Magnésio/química , Silicatos/análise , Silicatos/química , Água/química
11.
Science ; 341(6153): 1238670, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072924

RESUMO

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

12.
Science ; 341(6153): 1239505, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072928

RESUMO

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

13.
Science ; 340(6136): 1068-72, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23723230

RESUMO

Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

14.
Science ; 297(5578): 75-8, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-12040088

RESUMO

Global distributions of thermal, epithermal, and fast neutron fluxes have been mapped during late southern summer/northern winter using the Mars Odyssey Neutron Spectrometer. These fluxes are selectively sensitive to the vertical and lateral spatial distributions of H and CO2 in the uppermost meter of the martian surface. Poleward of +/-60 degrees latitude is terrain rich in hydrogen, probably H2O ice buried beneath tens of centimeter-thick hydrogen-poor soil. The central portion of the north polar cap is covered by a thick CO2 layer, as is the residual south polar cap. Portions of the low to middle latitudes indicate subsurface deposits of chemically and/or physically bound H2O and/or OH.


Assuntos
Hidrogênio , Marte , Nêutrons , Gelo-Seco , Meio Ambiente Extraterreno , Raios gama , Gelo , Astronave , Espectrometria gama , Análise Espectral , Temperatura , Água
15.
Science ; 297(5578): 81-5, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-12040090

RESUMO

Using the Gamma-Ray Spectrometer on the Mars Odyssey, we have identified two regions near the poles that are enriched in hydrogen. The data indicate the presence of a subsurface layer enriched in hydrogen overlain by a hydrogen-poor layer. The thickness of the upper layer decreases with decreasing distance to the pole, ranging from a column density of about 150 grams per square centimeter at -42 degrees latitude to about 40 grams per square centimeter at -77 degrees. The hydrogen-rich regions correlate with regions of predicted ice stability. We suggest that the host of the hydrogen in the subsurface layer is ice, which constitutes 35 +/- 15% of the layer by weight.


Assuntos
Hidrogênio , Gelo , Marte , Atmosfera , Gelo-Seco , Meio Ambiente Extraterreno , Raios gama , Modelos Teóricos , Nêutrons , Astronave , Espectrometria gama , Análise Espectral , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...