Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Metabolites ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535321

RESUMO

Consumption of high-fat diets (HFD) is associated with brain alterations, including changes in feeding behavior, cognitive decline, and dementia. Astrocytes play a role in HFD-induced neuroinflammation and brain dysfunction; however, this process is not entirely understood. We hypothesized that exposure to saturated fatty acids can compromise astrocyte viability and mitochondrial function. The C6 (astrocytes) cell line was treated with palmitate or stearate (200 µM and 400 µM) for 6 h. Cell viability, morphology, inflammatory markers, and oxidative stress were evaluated. To assess mitochondrial function, various parameters were measured (membrane potential, mass, respiration, and complex activities). We observed that 6 h of treatment with 400 µM palmitate decreased cell viability, and treatment with 200 µM palmitate changed the astrocyte morphology. Palmitate increased inflammatory markers (TNF-α and IL6) but did not induce oxidative stress. Palmitate significantly decreased the mitochondrial membrane potential and mitochondrial mass. Complex I activity also decreased in palmitate-treated cells; however, no changes were observed in mitochondrial respiration. In conclusion, palmitate, a saturated fatty acid, induces inflammation and impairs mitochondrial function, leading to reduced astrocytic cell viability and changes in cellular morphology. Our study provides valuable insights into the potential mechanisms underlying the relationship between saturated fatty acids, astrocytes, and mitochondrial function in obesity-related brain dysfunction.

4.
Metabolites ; 13(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677011

RESUMO

Obesity is defined as abnormal and excessive fat accumulation, and it is a risk factor for developing metabolic and neurodegenerative diseases and cognitive deficits. Obesity is caused by an imbalance in energy homeostasis resulting from increased caloric intake associated with a sedentary lifestyle. However, the entire physiopathology linking obesity with neurodegeneration and cognitive decline has not yet been elucidated. During the progression of obesity, adipose tissue undergoes immune, metabolic, and functional changes that induce chronic low-grade inflammation. It has been proposed that inflammatory processes may participate in both the peripheral disorders and brain disorders associated with obesity, including the development of cognitive deficits. In addition, mitochondrial dysfunction is related to inflammation and oxidative stress, causing cellular oxidative damage. Preclinical and clinical studies of obesity and metabolic disorders have demonstrated mitochondrial brain dysfunction. Since neuronal cells have a high energy demand and mitochondria play an important role in maintaining a constant energy supply, impairments in mitochondrial activity lead to neuronal damage and dysfunction and, consequently, to neurotoxicity. In this review, we highlight the effect of obesity and high-fat diet consumption on brain neuroinflammation and mitochondrial changes as a link between metabolic dysfunction and cognitive decline.

5.
Neurosci Lett ; 792: 136955, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347339

RESUMO

GPR139 is an orphan G-protein-coupled receptor that is expressed in restricted areas of the nervous system, including the hypothalamus. In this study, we hypothesized that GPR139 could be involved in the regulation of energy balance and metabolism. In the first part of the study, we confirmed that GPR139 is expressed in the hypothalamus and particularly in proopiomelanocortin and agouti-related peptide neurons of the mediobasal hypothalamus. Using a lentivirus with a short-hairpin RNA, we inhibited the expression of GPR139 bilaterally in the mediobasal hypothalamus of mice. The intervention promoted a 40% reduction in the hypothalamic expression of GPR139, which was accompanied by an increase in body mass, a reduction in fasting blood glucose levels, and an increase in insulin levels. In the hypothalamus, inhibition of GPR139 was accompanied by a reduction in the expression of orexin. As previous studies using a pharmacological antagonist of orexin showed a beneficial impact on type 2 diabetes and glucose metabolism, we propose that the inhibition of hypothalamic GPR139 could be acting indirectly through the orexin system to control systemic glucose and insulin. In conclusion, this study advances the characterization of GPR139 in the hypothalamus, demonstrating its involvement in the regulation of body mass, blood insulin, and glycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Camundongos , Animais , Orexinas/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo
6.
Neurosci Lett ; 781: 136660, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35489647

RESUMO

Currently, up to 35% off all drugs approved for the treatment of human diseases belong to the G-protein-coupled receptor (GPCR) family. Out of the almost 800 existing GPCRs, 25% have no known endogenous ligands and are regarded as orphan receptors; many of these are currently under investigation as potential pharmacological targets. Here, we hypothesised that orphan GPCRs expressed in the hypothalamus could be targets for the treatment of obesity and other metabolic diseases. Using bioinformatic tools, we identified 78 class A orphan GPCRs that are expressed in the hypothalamus of mice. Initially, we selected two candidates and determined their responsivities to nutritional interventions: GPR162, the GPCR with highest expression in the hypothalamus, and GPR68, a GPCR with intermediate expression in the hypothalamus and that has never been explored for its potential involvement in metabolic regulation. GPR162 expression was not modified by fasting/feeding or by the consumption of a high-fat diet, and was therefore not subsequently evaluated. Conversely, GPR68 expression increased in response to the consumption of a high-fat diet and reduced under fasting conditions. Using immunofluorescence, GPR68 was identified in both proopiomelanocortin-expressing and agouti-related peptide-expressing neurons in the hypothalamic arcuate nucleus. Acute inhibition of GPR68 with an allosteric modulator promoted an increase in the expression of the orexigenic agouti-related peptide and neuropeptide Y, whereas 4- and 12-h inhibition of GPR68 resulted in increased caloric intake. Thus, GPR68 has emerged as an orphan GPCR that is expressed in the hypothalamus and is involved in the regulation of feeding.


Assuntos
Núcleo Arqueado do Hipotálamo , Hipotálamo , Receptores Acoplados a Proteínas G , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Hipotálamo/metabolismo , Camundongos , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Front Psychiatry ; 13: 1027799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620673

RESUMO

Background: Currently, there is no standard treatment for Autism Spectrum Disorders (ASD), but there are many ways to minimize the symptoms and maximize abilities. Some studies suggest that exercise and other physical activities with children with ASD may be beneficial. In this study, we hypothesized that a physical exercise program (48-week exercise-intervention) could improve symptomatology dyad among children and adolescents with ASD. Our main aim was to examine the effects of physical activity on the primary clinical symptoms and associated comorbidities in children and adolescents with ASD. Methods: We allocated 229 children with ASD, ranging in age from 2.3-17.3 years (M = 7.8, SD = 3.2), into three groups: (a) exercise- intervention group, (b) control group from the same institution, and (c) control group from another institution. The exercise program was performed at moderate intensity in a 30 min section twice a week for 48 weeks. We used Bayesian multilevel regression modeling to examine participant outcomes and responses to the exercise-intervention. Results: Our results showed that a 48-week exercise-intervention substantially decreased ASD social interaction problems, attention deficit, emotional reactivity, stereotypical verbal and motor behavior, and sleep disturbances. However, physical exercise did not affect eye contact and food selectivity. We also observed that ASD severity and socioeconomic status influence eye contact, attention deficit, and sleep disturbance responses. Conclusion: In conclusion, children and adolescents with ASD exposed to a 48-week physical exercise-intervention program had important improvements in ASD symptoms. This study highlights that structured exercise programs can be a powerful complementary therapy for the ASD population.

9.
Front Neurosci ; 15: 734158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803583

RESUMO

Worldwide, and especially in Western civilizations, most of the staple diets contain high amounts of fat and refined carbohydrates, leading to an increasing number of obese individuals. In addition to inducing metabolic disorders, energy dense food intake has been suggested to impair brain functions such as cognition and mood control. Here we demonstrate an impaired memory function already 3 days after the start of a high-fat diet (HFD) exposure, and depressive-like behavior, in the tail suspension test, after 5 days. These changes were followed by reduced synaptic density, changes in mitochondrial function and astrocyte activation in the hippocampus. Preceding or coinciding with the behavioral changes, we found an induction of the proinflammatory cytokines TNF-α and IL-6 and an increased permeability of the blood-brain barrier (BBB), in the hippocampus. Finally, in mice treated with a TNF-α inhibitor, the behavioral and BBB alterations caused by HFD-feeding were mitigated suggesting that inflammatory signaling was critical for the changes. In summary, our findings suggest that HFD rapidly triggers hippocampal dysfunction associated with BBB disruption and neuroinflammation, promoting a progressive breakdown of synaptic and metabolic function. In addition to elucidating the link between diet and cognitive function, our results might be relevant for the comprehension of the neurodegenerative process.

10.
Sci Rep ; 11(1): 18015, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504172

RESUMO

Obesity and high-fat diet (HFD) consumption result in hypothalamic inflammation and metabolic dysfunction. While the TLR4 activation by dietary fats is a well-characterized pathway involved in the neuronal and glial inflammation, the role of its accessory proteins in diet-induced hypothalamic inflammation remains unknown. Here, we demonstrate that the knockdown of TLR4-interactor with leucine-rich repeats (Tril), a functional component of TLR4, resulted in reduced hypothalamic inflammation, increased whole-body energy expenditure, improved the systemic glucose tolerance and protection from diet-induced obesity. The POMC-specific knockdown of Tril resulted in decreased body fat, decreased white adipose tissue inflammation and a trend toward increased leptin signaling in POMC neurons. Thus, Tril was identified as a new component of the complex mechanisms that promote hypothalamic dysfunction in experimental obesity and its inhibition in the hypothalamus may represent a novel target for obesity treatment.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Neurônios/metabolismo , Obesidade/etiologia , Pró-Opiomelanocortina/genética , Receptor 4 Toll-Like/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Hipotálamo/patologia , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Obesidade/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
11.
Neurosci Biobehav Rev ; 129: 63-74, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310976

RESUMO

The worldwide prevalence of ASD is around 1%. Although the pathogenesis of ASD is not entirely understood, it is recognized that a combination of genetic, epigenetics, environmental factors and immune system dysfunction can play an essential role in its development. It has been suggested that autism results from the central nervous system derangements due to low-grade chronic inflammatory reactions associated with the immune system activation. ASD individuals have increased microglial activation, density, and increased proinflammatory cytokines in the several brain regions. Autism has no available pharmacological treatments, however there are pedagogical and psychotherapeutic therapies, and pharmacological treatment, that help to control behavioral symptoms. Recent data indicate that exercise intervention programs may improve cognitive and behavioral symptoms in children with ASD. Exercise can also modify inflammatory profiles that will ameliorate associated metabolic disorders. This review highlights the involvement of neuroinflammation in ASD and the beneficial effects of physical exercise on managing ASD symptoms and associated comorbidities.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/terapia , Encéfalo , Criança , Citocinas , Exercício Físico , Humanos , Sistema Imunitário
12.
Brain Res Bull ; 161: 106-115, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428627

RESUMO

Here we aimed to unify some previous controversial reports on changes in both cannabinoid CB1 receptor (CB1R) expression and glucose metabolism in the forebrain of rodent models of diabetes. We determined how glucose metabolism and its modulation by CB1R ligands evolve in the frontal cortex of young adult male Wistar rats, in the first 8 weeks of streptozotocin-induced type-1 diabetes (T1D). We report that frontocortical CB1R protein density was biphasically altered in the first month of T1D, which was accompanied with a reduction of resting glucose uptake ex vivo in acute frontocortical slices that was normalized after eight weeks in T1D. This early reduction of glucose uptake in slices was also restored by ex vivo treatment with both the non-selective CB1R agonists, WIN55212-2 (500 nM) and the CB1R-selective agonist, ACEA (3 µM) while it was exacerbated by the CB1R-selective antagonist, O-2050 (500 nM). These results suggest a gain-of-function for the cerebrocortical CB1Rs in the control of glucose uptake in diabetes. Although insulin and IGF-1 receptor protein densities remained unaffected, phosphorylated GSKα and GSKß levels showed different profiles 2 and 8 weeks after T1D induction in the frontal cortex. Altogether, the biphasic response in frontocortical CB1R density within a month after T1D induction resolves previous controversial reports on forebrain CB1R levels in T1D rodent models. Furthermore, this study also hints that cannabinoids may be useful to alleviate impaired glucoregulation in the diabetic cortex.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Lobo Frontal/metabolismo , Glucose/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Analgésicos/farmacologia , Animais , Benzoxazinas/farmacologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Lobo Frontal/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética
14.
J. pediatr. (Rio J.) ; 95(6): 705-712, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1056657

RESUMO

ABSTRACT Objective: This study examined the growth status and physical development of Brazilian children with autism spectrum disorders from 4 to 15 years of age. Furthermore, it was examined whether variation in growth patterns and weight status was influenced by the use of psychotropic medications. Methods: One-hundred and twenty children aged 3.6-12.1 years at baseline (average = 7.2 years, SD = 2.3 years) diagnosed with autism spectrum disorders were measured on three repeated occasions across a 4-year period. Stature, body mass, and body mass index were considered. Bayesian multilevel modeling was used to describe the individual growth patterns. Results: Growth in stature was comparable to the age-specific 50th percentile for Centers for Disease Control and Prevention reference data until approximately 8 years, but a substantial decrease in growth rate was observed thereafter, reaching the age-specific 5th percentile at 15 years of age. Both body mass and body mass index values were, on average, higher than both the Brazilian and Centers for Disease Control and Prevention age-specific 95th percentile reference until 8 years, but below the 50th specific-age percentile at the age of 15 years. Conclusions: Brazilian boys with autism spectrum disorders between 4 and 15 years appear to have impaired growth in stature after 8-9 years of age, likely impacting pubertal growth. A high prevalence of overweight and obesity was observed in early childhood, although a trend of substantial decrease in body mass and body mass index was apparent when children with autism spectrum disorders entered the years of pubertal development.


RESUMO Objetivo: Este estudo examinou o estado de crescimento e o desenvolvimento físico de crianças brasileiras com transtornos do espectro autista entre 4 e 15 anos. Adicionalmente, examinamos se a variação nos padrões de crescimento e na massa corporal foi influenciada pelo uso de medicamentos psicotrópicos. Métodos: 120 crianças com idades entre 3,6 e 12,1 anos no início do estudo (média = 7,2 anos, DP = 2,3 anos) diagnosticadas com transtornos do espectro autista foram avaliadas em três ocasiões repetidas em um período de 4 anos. Foram considerados estatura, massa corporal e índice de massa corporal. O modelo multinível bayesiano foi utilizado para descrever os padrões de crescimento individual. Resultados: O crescimento em estatura foi comparável ao percentil 50 específico para a idade para os dados de referência do Centro de Controle e Prevenção de Doenças dos Estados Unidos até cerca de 8 anos. Porém, foi observada uma redução substancial na taxa de crescimento depois dos 8 anos, atingindo o percentil 5 específico para a idade aos 15 anos de idade. Tanto os valores de massa corporal quanto de índice de massa corporal foram, em média, maiores comparativamente ao percentil 95 específico para a idade até aos 8 anos da referência brasileira e do Centro de Controle e Prevenção de Doenças dos Estados Unidos, porém abaixo do percentil 50 específico para a idade aos 15 anos de idade. Conclusões: Os meninos brasileiros com transtornos do espectro autista entre 4 e 15 anos parecem ter retardo do crescimento na estatura após os 8-9 anos, provavelmente afeta o crescimento púbere. Foi observada uma alta prevalência de sobrepeso e obesidade na primeira infância, apesar de uma tendência de redução substancial na massa corporal e no índice de massa corporal ter sido aparente quando as crianças com transtornos do espectro autista entraram nos anos de desenvolvimento púbere.


Assuntos
Humanos , Masculino , Pré-Escolar , Criança , Adolescente , Estatura , Transtorno do Espectro Autista/complicações , Índice de Massa Corporal , Desenvolvimento Infantil , Estudos Longitudinais , Teorema de Bayes , Sobrepeso/etiologia , Obesidade/etiologia
15.
Front Neurosci ; 13: 323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057350

RESUMO

The global prevalence of obesity has been steadily increasing. Although pharmacotherapy and bariatric surgeries can be useful adjuvants in the treatment of morbid obesity, they may lose long-term effectiveness. Obesity result largely from unbalanced energy homeostasis. Palatable and densely caloric foods may affect the brain overlapped circuits involved with homeostatic hypothalamus and hedonic feeding. Deep brain stimulation (DBS) consists of delivering electrical impulses to specific brain targets to modulate a disturbed neuronal network. In selected patients, DBS has been shown to be safe and effective for movement disorders. We review all the cases reports and series of patients treated with DBS for obesity using a PubMed search and will address the following obesity-related issues: (i) the hypothalamic regulation of homeostatic feeding; (ii) the reward mesolimbic circuit and hedonic feeding; (iii) basic concepts of DBS as well as the rationale for obesity treatment; (iv) perspectives and challenges in obesity DBS. The small number of cases provides preliminary evidence for the safety and the tolerability of a potential DBS approach. The ventromedial (n = 2) and lateral (n = 8) hypothalamic nuclei targets have shown mixed and disappointing outcomes. Although nucleus accumbens (n = 7) targets were more encouraging for the outcomes of body weight reduction and behavioral control for eating, there was one suicide reported after 27 months of follow-up. The authors did not attribute the suicide to DBS therapy. The identification of optimal brain targets, appropriate programming strategies and the development of novel technologies will be important as next steps to move DBS closer to a clinical application. The identification of electrical control signals may provide an opportunity for closed-loop adaptive DBS systems to address obesity. Metabolic and hormonal sensors such as glycemic levels, leptin, and ghrelin levels are candidate control signals for DBS. Focused excitation or alternatively inhibition of regions of the hypothalamus may provide better outcomes compared to non-selective DBS. Utilization of the NA delta oscillation or other physiological markers from one or multiple regions in obesity-related brain network is a promising approach. Experienced multidisciplinary team will be critical to improve the risk-benefit ratio for this approach.

16.
Physiol Behav ; 204: 309-323, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876771

RESUMO

Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.


Assuntos
Transtornos Cognitivos/terapia , Epigênese Genética , Terapia por Exercício/métodos , Exercício Físico/psicologia , Obesidade/complicações , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Humanos , Obesidade/psicologia
17.
J Pediatr (Rio J) ; 95(6): 705-712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30071189

RESUMO

OBJECTIVE: This study examined the growth status and physical development of Brazilian children with autism spectrum disorders from 4 to 15 years of age. Furthermore, it was examined whether variation in growth patterns and weight status was influenced by the use of psychotropic medications. METHODS: One-hundred and twenty children aged 3.6-12.1 years at baseline (average=7.2 years, SD=2.3 years) diagnosed with autism spectrum disorders were measured on three repeated occasions across a 4-year period. Stature, body mass, and body mass index were considered. Bayesian multilevel modeling was used to describe the individual growth patterns. RESULTS: Growth in stature was comparable to the age-specific 50th percentile for Centers for Disease Control and Prevention reference data until approximately 8 years, but a substantial decrease in growth rate was observed thereafter, reaching the age-specific 5th percentile at 15 years of age. Both body mass and body mass index values were, on average, higher than both the Brazilian and Centers for Disease Control and Prevention age-specific 95th percentile reference until 8 years, but below the 50th specific-age percentile at the age of 15 years. CONCLUSIONS: Brazilian boys with autism spectrum disorders between 4 and 15 years appear to have impaired growth in stature after 8-9 years of age, likely impacting pubertal growth. A high prevalence of overweight and obesity was observed in early childhood, although a trend of substantial decrease in body mass and body mass index was apparent when children with autism spectrum disorders entered the years of pubertal development.


Assuntos
Transtorno do Espectro Autista/complicações , Estatura , Adolescente , Teorema de Bayes , Índice de Massa Corporal , Criança , Desenvolvimento Infantil , Pré-Escolar , Humanos , Estudos Longitudinais , Masculino , Obesidade/etiologia , Sobrepeso/etiologia
18.
EBioMedicine ; 39: 436-447, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502051

RESUMO

BACKGROUND: Inflammation is the most relevant mechanism linking obesity with insulin-resistance and metabolic disease. It impacts the structure and function of tissues and organs involved in metabolism, such as the liver, pancreatic islets and the hypothalamus. Brown adipose tissue has emerged as an important component of whole body energy homeostasis, controlling caloric expenditure through the regulation of non-shivering thermogenesis. However, little is known about the impact of systemic inflammation on the structure and function of brown adipose tissue. METHODS: The relations between IL10 and mitochondria structure/function and also with thermogenesis were evaluated by bioinformatics using human and rodent data. Real-time PCR, immunoblot, fluorescence and transmission electron microscopy were employed to determine the effect of IL10 in the brown adipose tissue of wild type and IL10 knockout mice. FINDINGS: IL10 knockout mice, a model of systemic inflammation, present severe structural abnormalities of brown adipose tissue mitochondria, which are round-shaped with loss of cristae structure and increased fragmentation. IL10 deficiency leads to newborn cold intolerance and impaired UCP1-dependent brown adipose tissue mitochondrial respiration. The reduction of systemic inflammation with an anti-TNFα monoclonal antibody partially rescued the structural but not the functional abnormalities of brown adipose tissue mitochondria. Using bioinformatics analyses we show that in both humans and mice, IL10 transcripts correlate with mitochondrial lipid metabolism and caspase gene expression. INTERPRETATION: IL10 and systemic inflammation play a central role in the regulation of brown adipose tissue by controlling mitochondrial structure and function. FUND: Sao Paulo Research Foundation grant 2013/07607-8.


Assuntos
Tecido Adiposo Marrom/citologia , Inflamação/patologia , Interleucina-10/genética , Mitocôndrias/patologia , Estremecimento/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Caspases/genética , Linhagem Celular , Temperatura Baixa , Biologia Computacional/métodos , Metabolismo Energético , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína Desacopladora 1/metabolismo
19.
Front Neurosci ; 12: 813, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443205

RESUMO

The hypothalamus plays a major role in the regulation of food intake and energy expenditure. In the last decade, it was demonstrated that consumption of high-fat diets triggers the activation of an inflammatory process in the hypothalamus, inducing neurofunctional alterations and contributing to the development of obesity. Hypoxia-inducible factors (HIFs) are key molecules that regulate cellular responses to inflammation and hypoxia, being essential for the normal cell function and survival. Currently, evidence points to a role of HIF pathway in metabolic regulation that could also be involved in the progression of obesity and metabolic diseases. The challenge is to understand how HIF modulation impacts body mass gain and metabolic disorders such as insulin resistance. Distinct animal models with tissue-specific knocking-out or overexpression of hypoxia signaling pathway genes revealed a cell-specificity in the activation of HIF pathways, and some of them have opposite phenotypes among the various HIFs gain- and loss-of-function mouse models. In this review, we discuss the major findings that provide support for a role of HIF pathway involvement in the regulation of metabolism, especially in glucose and energy homeostasis.

20.
Brain Behav Immun ; 73: 550-561, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935943

RESUMO

Hypothalamic hypoxia-inducible factor-1 (HIF-1) can regulate whole-body energy homeostasis in response to changes in blood glucose, suggesting that it acts as a sensor for systemic energy stores. Here, we hypothesized that hypothalamic HIF-1 could be affected by diet-induced obesity (DIO). We used eight-week old, male C57Bl6 mice, fed normal chow diet or with high fat diet for 1, 3, 7, 14 and 28 days. The expression of HIF-1alpha and HIF-1beta was measured by PCR and western blotting and its hypothalamic distribution was evaluated by fluorescence microscopy. Inhibition of HIF-1beta in arcuate nucleus of hypothalamus was performed using stereotaxic injection of shRNA lentiviral particles and animals were grouped under normal chow diet or high fat diet for 14 days. Using bioinformatics, we show that in humans, the levels of HIF-1 transcripts are directly correlated with those of hypothalamic transcripts for proteins involved in inflammation, regulation of apoptosis, autophagy, and the ubiquitin/proteasome system; furthermore, in rodents, hypothalamic HIF-1 expression is directly correlated with the phenotype of increased energy expenditure. In mice, DIO was accompanied by increased HIF-1 expression. The inhibition of hypothalamic HIF-1 by injection of an shRNA resulted in a further increase in body mass, a decreased basal metabolic rate, increased hypothalamic inflammation, and glucose intolerance. Thus, hypothalamic HIF-1 is increased during DIO, and its inhibition worsens the obesity-associated metabolic phenotype. Thus, hypothalamic HIF-1 emerges as a target for therapeutic intervention against obesity.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Obesidade/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Metabolismo Energético , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...