Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 6: 20050, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831464

RESUMO

In mature skeletal muscle, the intracellular Ca(2+) concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca(2+) release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1's potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca(2+) signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca(2+) signaling during muscle organ development.


Assuntos
Sinalização do Cálcio , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Análise de Sequência com Séries de Oligonucleotídeos
3.
Sci Rep ; 4: 3803, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24448162

RESUMO

Neural stem cells (NSCs) generate new neurons in vivo and in vitro throughout adulthood and therefore are physiologically and clinically relevant. Unveiling the mechanisms regulating the lineage progression from NSCs to newborn neurons is critical for the transition from basic research to clinical application. However, the direct analysis of NSCs and their progeny is still elusive due to the problematic identification of the cells. We here describe the isolation of highly purified genetically unaltered NSCs and transit-amplifying precursors (TAPs) from the adult subependymal zone (SEZ). Using this approach we show that a primary cilium and high levels of epidermal growth factor receptor (EGFR) at the cell membrane characterize quiescent and cycling NSCs, respectively. However, we also observed non-ciliated quiescent NSCs and NSCs progressing into the cell cycle without up-regulating EGFR expression. Thus, the existence of NSCs displaying distinct molecular and structural conformations provides more flexibility to the regulation of quiescence and cell cycle progression.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Cílios/fisiologia , Epêndima/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Ciclo Celular , Linhagem da Célula , Membrana Celular/metabolismo , Células Cultivadas , Epêndima/metabolismo , Receptores ErbB/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
4.
Stem Cell Rev Rep ; 10(1): 1-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24022811

RESUMO

Pluripotent stem cells have great potential for regenerative medicine; however, their clinical use is associated with a risk of tumor formation. We utilized pluripotent cells expressing green fluorescent protein and puromycin resistance under control of the Oct4 promoter to study the persistence of potential pluripotent cells under embryoid body (EB) culture conditions, which are commonly used to obtain organotypic cells. We found that i.) OCT4-expressing cells dramatically decrease during the first week of differentiation, ii.) the number of OCT4-expressing cells recovers from day 7 on, iii.) the OCT4-expressing cells are similar to embryonic stem cells grown in the presence of leukemia inhibitory factor LIF but express several markers associated with germ cell formation, such as DAZL and STRA-8 and iv.) the persistence of potentially pluripotent cells is independent of supportive cells in EBs. Finally, OCT4-expressing cells, isolated from EBs after 2-month of culture, were further maintained under feeder-free conditions in absence of LIF and continued to express OCT4 in 95 % of the population for at least 36 days. These findings point to an alternative state of stable OCT4 expression. In the frame of the landscape model of differentiation two attractors of pluripotency might be defined based on their different characteristics.


Assuntos
Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo
5.
Arch Toxicol ; 87(1): 123-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179753

RESUMO

Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the 'human embryonic stem cell (hESC)-derived novel alternative test systems (ESNATS)' European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (<20 % overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large 'common response' to VPA and MeHg could be distinguished from 'compound-specific' responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Perfilação da Expressão Gênica , Testes de Mutagenicidade/métodos , Síndromes Neurotóxicas/genética , Sítios de Ligação , Células Cultivadas , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Compostos de Metilmercúrio/toxicidade , Análise de Sequência com Séries de Oligonucleotídeos , Ácido Valproico/toxicidade
6.
PLoS One ; 7(5): e36708, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590590

RESUMO

Epigenetic changes, including histone modifications or chromatin remodeling are regulated by a large number of human genes. We developed a strategy to study the coordinate regulation of such genes, and to compare different cell populations or tissues. A set of 150 genes, comprising different classes of epigenetic modifiers was compiled. This new tool was used initially to characterize changes during the differentiation of human embryonic stem cells (hESC) to central nervous system neuroectoderm progenitors (NEP). qPCR analysis showed that more than 60% of the examined transcripts were regulated, and >10% of them had a >5-fold increased expression. For comparison, we differentiated hESC to neural crest progenitors (NCP), a distinct peripheral nervous system progenitor population. Some epigenetic modifiers were regulated into the same direction in NEP and NCP, but also distinct differences were observed. For instance, the remodeling ATPase SMARCA2 was up-regulated >30-fold in NCP, while it remained unchanged in NEP; up-regulation of the ATP-dependent chromatin remodeler CHD7 was increased in NEP, while it was down-regulated in NCP. To compare the neural precursor profiles with those of mature neurons, we analyzed the epigenetic modifiers in human cortical tissue. This resulted in the identification of 30 regulations shared between all cell types, such as the histone methyltransferase SETD7. We also identified new markers for post-mitotic neurons, like the arginine methyl transferase PRMT8 and the methyl transferase EZH1. Our findings suggest a hitherto unexpected extent of regulation, and a cell type-dependent specificity of epigenetic modifiers in neurodifferentiation.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Montagem e Desmontagem da Cromatina/fisiologia , Células-Tronco Embrionárias/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/metabolismo , Transcrição Gênica/fisiologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/citologia , Epigênese Genética/fisiologia , Feminino , Humanos , Masculino , Células-Tronco Neurais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...