Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391653

RESUMO

Treatment of chronic wounds is challenging, and the development of different formulations based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the advantage of synergistically combining the bioactivity of the protein with the biocompatibility and hydrogel properties of polysaccharides. In this study, a hydrogel formulation containing insulin, chitosan, and hydroxypropyl methyl cellulose (Chi/HPMC/Ins) was prepared and characterized by FTIR, thermogravimetric, and gel point analyses. The in vitro cell viability and cell migration potential of the Chi/HPMC/Ins hydrogel were evaluated in human keratinocyte cells (HaCat) by MTT and wound scratch assay. The hydrogel was applied to excisional full-thickness wounds in diabetic mice for twenty days for in vivo studies. Cell viability studies indicated no cytotoxicity of the Chi/HPMC/Ins hydrogel. Moreover, the Chi/HPMC/Ins hydrogel promoted faster gap closure in the scratch assay. In vivo, the wounds treated with the Chi/HPMC/Ins hydrogel resulted in faster wound closure, formation of a more organized granulation tissue, and hair follicle regeneration. These results suggest that Chi/HPMC/Ins hydrogels might promote wound healing in vitro and in vivo and could be a new potential dressing for wound healing.

2.
Front Vet Sci ; 10: 1249951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789869

RESUMO

This study aimed to explore the effect of external mechanical perturbations on postural stability (PS) in dogs using the body center of pressure (COP). Thirteen sound adult dogs were included in this study. PS was tested during quiet standing on a pressure measurement plate. The conditions included a standard standing measurement and external mechanical perturbations conducted using six settings on a motorized training platform with different intensities of speed and amplitude. Measurement conditions were compared using linear mixed-effects models, followed by multiple comparisons using Sidak's alpha correction procedure. Compared with the standing measurement, external mechanical perturbations resulted in a significant increase in almost all COP parameters, indicating a challenge for the PS. Furthermore, an increase in amplitude had a greater effect than an increase in speed, whereas the combination of the highest intensities of amplitude and speed was not well tolerated by the dogs. The mediolateral COP displacement was significantly greater than the craniocaudal COP displacement during standing measurement and conditions with a small amplitude, whereas no significant difference was observed during settings with an increased amplitude. To the best of our knowledge, this is the first study to demonstrate the effects of a balance training device in dogs. Therefore, the intensity of the training programs on motorized platforms or similar devices can be controlled by the wobbling amplitude of the platform.

3.
J Psychiatry Neurosci ; 48(4): E267-E284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437920

RESUMO

BACKGROUND: The nucleus accumbens (NAcc) is a crucial brain region for emotionally relevant behaviours. The NAcc is mainly composed of medium spiny neurons (MSNs) expressing either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). The D1-MSNs project to the ventral tegmental area (VTA) and the ventral pallidum (VP), whereas the D2-MSNs project only to the VP. The D1- and D2-MSNs have been associated with depression-like behaviours, but their contribution to anxiety remains to be determined. METHODS: We used optogenetic tools to selectively manipulate D1-MSN projections from the NAcc core to the VP or VTA and D2-MSN projections to the VP during validated anxiety-producing behavioural procedures in naive mice. In addition, we assessed the effects of optical stimulation on neuronal activity using in vivo electrophysiologic recordings in anesthetized animals. RESULTS: Optogenetic activation of D1-MSN projections to the VTA or VP did not trigger anxiety-like behaviour. However, optical activation of D2-MSN projections to the VP significantly increased anxiety-like behaviour. This phenotype was associated with a decrease in the neuronal activity of putative GABAergic neurons in the VP. Importantly, pretreating D2-MSN-VP animals with the γ-aminobutyric acid modulator diazepam prevented the optically triggered anxiety-like behaviour. LIMITATIONS: The exclusive use of males in the behavioural tests limits broader interpretation of the findings. Although we used optogenetic conditions that trigger quasi-physiologic changes, there are caveats associated with the artificial manipulation of neuronal activity. CONCLUSION: The D2-MSN-VP projections contributed to the development of anxiety-like behaviour, through modulation of GABAergic activity in the VP.


Assuntos
Prosencéfalo Basal , Núcleo Accumbens , Masculino , Animais , Camundongos , Neurônios Espinhosos Médios , Ansiedade , Transtornos de Ansiedade
4.
Life Sci ; 327: 121852, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321535

RESUMO

AIMS: Maternal diabetes negatively impacts the offspring's brain, but little is known about its effects on the retina, which is also part of the central nervous system. We hypothesized that maternal diabetes adversely influences offspring retina development leading to structural and functional deficits. MAIN METHODS: Retinal structure and function were evaluated at infancy, by optical coherence tomography and electroretinography, in male and female offspring of control, diabetic and diabetic-treated with insulin Wistar rats. KEY FINDINGS: Maternal diabetes induced a delay in male and female offspring eye-opening, while insulin treatment expedited it. Structural analysis showed that maternal diabetes decreased the thickness of the inner and outer segment layer of photoreceptors in male offspring. Electroretinography also revealed that maternal diabetes decreased the amplitude of scotopic b-wave and flicker response in males, suggesting bipolar cells and cone photoreceptor dysfunction, an effect not observed in females. Conversely, maternal diabetes decreased cone arrestin protein levels in female retinas, while not affecting cone photoreceptor number. Dam insulin therapy was efficient in preventing the offspring photoreceptor changes. SIGNIFICANCE: Our results suggest that photoreceptors are affected by maternal diabetes, which may account for visual impairments at infancy. Notably, both male and female offspring presented specific vulnerabilities to hyperglycemia in this sensitive period of development.


Assuntos
Diabetes Gestacional , Insulinas , Humanos , Gravidez , Ratos , Masculino , Feminino , Animais , Ratos Wistar , Retina , Células Fotorreceptoras Retinianas Cones/fisiologia , Eletrorretinografia
5.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985449

RESUMO

Pullulan is a linear exopolysaccharide, produced in the fermentation media of Aureobasidium pullulans, with a variety of applications in the food and pharmaceutical industries. Pullulan derivatives have growing potential for biomedical applications, but the high cost of pullulan biofabrication currently restricts its commercial use. Better control over pullulan yield, molecular weight and melanin production by altering fermentation conditions could improve the economics. In this study, the effects of sugar and mineral salt stresses on the pullulan production of A. pullulans ATCC 42023 were examined in batch processes. The chemical structure of the recovered pullulan was characterized by FTIR and NMR spectroscopy, and the molecular weight distribution was obtained via SEC. Pullulan yield and melanin production varied when the conditions were adjusted, and pullulans with different molar masses were obtained. Higher-yield pullulan production and a lower polydispersity index were observed when CuSO4 was added to the fermentation in comparison with the control and with the addition of sugars and other salts. Biofabrication of pullulan under stress conditions is a promising strategy to enhance biopolymer yield and to obtain pullulan with a targeted molecular weight.


Assuntos
Ascomicetos , Sais , Sais/farmacologia , Açúcares , Melaninas , Ascomicetos/química , Fermentação , Minerais/farmacologia
6.
Front Endocrinol (Lausanne) ; 14: 1102068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926023

RESUMO

The involvement of immunity in psychiatric disorders, such as anxiety, is typified by the morphologic adaptation of microglia, immune cells of the brain, to anxiogenic stimuli. We previously reported sexually differentiated microglia morphology in adult rodents, in brain locations implicated in anxiety, including the pre-frontal cortex. These physiologic differences likely drive sex-dependent patterns of microglia morphologic remodeling in response to varied stress conditions in different periods of life, that correlate with sex-dependent behavioral adaptation to anxiogenic stimuli. The time-window of appearance of sex differences in microglia, correlating with sex-specific behavioral performance in anxiogenic conditions are still unknown. In rodents, a postnatal peak of the sexual hormone testosterone is determinant for the so-called brain masculinization and sex-determined behavioral traits. In the present work we aim to clarify if differences in microglia morphology are present at birth or can be driven by postnatal testosterone and impacts on the ability to deal with an anxiogenic context. Differences in microglia morphology are not present at birth, but are observable at adolescence (increased complexity of male microglia, particularly in branches more proximal to the soma), when differences in behavior are also observed. Our data also show that adolescent females neonatally treated with testosterone exhibit masculinized microglia and behavior. Importantly, between adolescence and adulthood, a sex-determined shift in the pattern of complexity takes place and microglia from females become more complex. When testosterone is administered, this morphological effect is partially abolished, approximating microglia and behavior to the male phenotype.


Assuntos
Microglia , Testosterona , Animais , Feminino , Masculino , Testosterona/farmacologia , Comportamento Animal , Comportamento Sexual Animal , Encéfalo/fisiologia
7.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677747

RESUMO

Lignin is an underutilized high-potential biopolymer that has been extensively studied over the past few decades. However, lignin still has drawbacks when compared with well-known petroleum-based equivalents, and the production of tailored lignin fractions is highly in demand. In this work, a new method for the fractionation of Lignoboost Kraft Lignin (LKL) is proposed by using two different hydrotropes: sodium xylenesulfonate (SXS) and sodium cumenesulfonate (SCS). The different fractions are obtained by sequentially decreasing the hydrotropic concentration with the addition of water. Four and three different fractions were retrieved from the use of SXS and SCS, respectively. The LKL and respective fractions were analysed, and compared by GPC, FTIR-ATR, 1H-NMR, 13C-NMR, 31P NMR, 2D HSQC and SEM. The fractions showed different molecular weights, polydispersity, and amount of functional groups. Our water-based lignin fractionation platform can potentially be combined with different lignin extraction and processing technologies, with the advantage of hydrotrope recycling.

8.
Front Behav Neurosci ; 16: 834821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330844

RESUMO

Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psychopathologies. However, little is known about the impact of the duration of stress exposure upon microglia and neurons morphology, particularly considering sex differences. This issue deserves particular investigation, considering that the process of morphologic remodeling of neurons and microglia is usually accompanied by functional changes with behavioral expression. Here, we examine the effects of short and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We report that long-term uCMS induced more behavioral alterations in males, which present anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while females only display anxiety-like behavior. After short-term uCMS, both sexes presented anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy in males and an atrophy in females, transient effects that do not persist after long-term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more vulnerable to neuronal morphological alterations in a region-specific manner: dendritic atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of the NAc, both after short- or long-term uCMS. The morphology of neurons in these brain regions were not affected in females. These findings raise the possibility that, by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may contribute for differences in the clinical presentation of stress-related disorders under the control of sex-specific mechanisms.

9.
Eur J Clin Invest ; 51(12): e13639, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34120349

RESUMO

BACKGROUND: Prenatal stress is associated with increased susceptibility to psychiatric and metabolic disorders later in life. Prenatal exposure to stress mediators may have sex-dependent effects on offspring brain and metabolic function, promoting a sex-specific vulnerability to psychopathology and metabolic alterations at adulthood. In this work, the impact of prenatal stress on glucose homeostasis and peripheral metabolism of male and female offspring was investigated in a chronic anxiety animal model. METHODS: Pregnant Wistar rats were injected with saline or glucocorticoid (dexamethasone: 1 mg/kg, subcutaneous) at gestational days 18 and 19. Male and female offspring weight was monitored, and anxious-like behaviour and peripheral insulin-sensitive tissues were analysed at adulthood. RESULTS: At birth, females and males prenatally exposed to stress presented decreased body weight which remained low in females. At adulthood, a morphological disorganization of the Langerhans islets was observed in both sexes prenatally exposed to stress, yet not changes in insulin levels were detected. Also, prenatal stress increased glucose transporter 4 (GLUT-4) levels in female and male adipose tissues and decreased insulin receptor levels in the liver and skeleton muscle but only in females. CONCLUSIONS: Exposure to stress mediators in critical periods of development negatively affects behaviour and metabolism. Prenatal stress programmes offspring peripheral metabolism in a sex-specific manner, emphasizing that the response to stress in critical periods of development may be sex-specific having each sex different vulnerabilities to psychiatric and metabolic disorders. Considering sex-specificities may provide critical clues for the design of preventive strategies and for early therapeutic intervention.


Assuntos
Ansiedade/metabolismo , Glucose/metabolismo , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Psicológico/metabolismo , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Gravidez , Ratos , Receptor de Insulina/metabolismo , Fatores Sexuais
10.
Neurobiol Stress ; 14: 100302, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33614864

RESUMO

Prenatal exposure to stress or glucocorticoids (GC) is associated with the appearance of psychiatric diseases later in life. Microglia, the immune cells of the brain, are altered in stress-related disorders. Synthetic GC such as dexamethasone (DEX) are commonly prescribed in case of preterm risk labour in order to promote fetal lung maturation. Recently, we reported long-lasting differences in microglia morphology in a model of in utero exposure to DEX (iuDEX), that presents an anxious phenotype. However, it is still unclear if stress differentially affects iuDEX males and females. In this work, we evaluated how iuDEX animals of both sexes cope with chronic mild stress for 2 weeks. We evaluated emotional behavior and microglia and neuronal morphology in the dorsal hippocampus (dHIP) and nucleus accumbens (NAc), two brain regions involved in emotion-related disorders. We report that males and females prenatally exposed to DEX have better performance in anxiety- and depression-related behavioral tests after chronic stress exposure in adulthood than non-exposed animals. Interestingly, iuDEX animals present sex-dependent changes in microglia morphology in the dHIP (hypertrophy in females) and in the NAc (atrophy in females and hypertrophy in males). After chronic stress, these cells undergo sex-specific morphological remodeling. Paralleled to these alterations in cytoarchitecture of microglia, we report inter-regional differences in dendritic morphology in a sex-specific manner. iuDEX females present fewer complex neurons in the NAc, whereas iuDEX males presented less complex neuronal morphology in the dHIP. Interestingly, these alterations were modified by stress exposure. Our work shows that stressful events during pregnancy can exert a preserved sex-specific effect in adulthood. Although the role of the observed cellular remodeling is still unknown, sex-specific differences in microglia plasticity induced by long-term stress exposure may anticipate differences in drug efficacy in the context of stress-induced anxiety- or depression-related behaviors.

11.
Mol Psychiatry ; 25(12): 3448, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31534159

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

12.
Eur J Neurosci ; 51(6): 1377-1387, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31454441

RESUMO

Microglia cells exert a critical role in brain development, mainly supported by their immune functions, which predicts an impact on the genesis of psychiatric disorders. In fact, microglia stress during gestation is, for instance, associated with chronic anxiety and cognitive deficits accompanied by long-lasting, region- and sex-specific changes in microglia morphology. We recently reported that the pattern of microglia morphologic plasticity, which is sex-determined, impacts on anxious-like behaviour and cognition. We also reported that the pharmacologic blockade of adenosine A2A receptors (A2A R) is able to reshape microglia morphology, in a sex-specific manner and with behavioural sequelae. In order to better understand the role of A2A R in the sex differentiation of microglia, we now compared their morphology in wild-type and A2A R knockout male and female C57BL/6 mice in two cardinal brain regions implicated in anxiety-like behaviour and cognition, the prefrontal cortex (PFC) and the dorsal hippocampus (dHIP). We report interregional differences between PFC and dHIP in a sex-specific manner: while males presented more complex microglia in the dHIP, microglia from females had a more complex morphology in the PFC. Surprisingly, the genetic deletion of A2A R did not alter these sex differences, but promoted the exclusive remodelling (increase in complexity) in PFC microglia from females. These findings further support the existence of a heterogeneous microglial network, distinct between sexes and brain regions, and help characterizing the role of A2A R in the sex- and brain region-specific morphologic differentiation of microglia.


Assuntos
Microglia , Receptor A2A de Adenosina , Caracteres Sexuais , Adenosina , Animais , Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo
13.
Mol Psychiatry ; 25(12): 3241-3255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462765

RESUMO

Deficits in decoding rewarding (and aversive) signals are present in several neuropsychiatric conditions such as depression and addiction, emphasising the importance of studying the underlying neural circuits in detail. One of the key regions of the reward circuit is the nucleus accumbens (NAc). The classical view on the field postulates that NAc dopamine receptor D1-expressing medium spiny neurons (D1-MSNs) convey reward signals, while dopamine receptor D2-expressing MSNs (D2-MSNs) encode aversion. Here, we show that both MSN subpopulations can drive reward and aversion, depending on their neuronal stimulation pattern. Brief D1- or D2-MSN optogenetic stimulation elicited positive reinforcement and enhanced cocaine conditioning. Conversely, prolonged activation induced aversion, and in the case of D2-MSNs, decreased cocaine conditioning. Brief stimulation was associated with increased ventral tegmenta area (VTA) dopaminergic tone either directly (for D1-MSNs) or indirectly via ventral pallidum (VP) (for D1- and D2-MSNs). Importantly, prolonged stimulation of either MSN subpopulation induced remarkably distinct electrophysiological effects in these target regions. We further show that blocking κ-opioid receptors in the VTA (but not in VP) abolishes the behavioral effects induced by D1-MSN prolonged stimulation. In turn, blocking δ-opioid receptors in the VP (but not in VTA) blocks the behavioral effects elicited by D2-MSN prolonged stimulation. Our findings demonstrate that D1- and D2-MSNs can bidirectionally control reward and aversion, explaining the existence of controversial studies in the field, and highlights that the proposed striatal functional opposition needs to be reconsidered.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D1 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Recompensa
14.
Glia ; 67(1): 182-192, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461068

RESUMO

Epidemiologic studies have provided compelling evidence that prenatal stress, through excessive maternal glucocorticoids exposure, is associated with psychiatric disorders later in life. We have recently reported that anxiety associated with prenatal exposure to dexamethasone (DEX, a synthetic glucocorticoid) correlates with a gender-specific remodeling of microglia in the medial prefrontal cortex (mPFC), a core brain region in anxiety-related disorders. Gender differences in microglia morphology, the higher prevalence of anxiety in women and the negative impact of anxiety in cognition, led us to specifically evaluate cognitive behavior and associated circuits (namely mPFC-dorsal hippocampus, dHIP), as well as microglia morphology in female rats prenatally exposed to dexamethasone (in utero DEX, iuDEX). We report that iuDEX impaired recognition memory and deteriorated neuronal synchronization between mPFC and dHIP. These functional deficits are paralleled by microglia hyper-ramification in the dHIP and decreased ramification in the mPFC, showing a heterogeneous remodeling of microglia morphology, both postnatally and at adulthood in different brain regions, that differently affect mood and cognition. The chronic blockade of adenosine A2A receptors (A2A R), which are core regulators of microglia morphology and physiology, ameliorated the cognitive deficits, but not the anxiety-like behavior. Notably, A2A R blockade rectified both microglia morphology in the dHIP and the lack of mPFC-dHIP synchronization, further heralding their role in cognitive function.


Assuntos
Ansiedade/metabolismo , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Dexametasona/toxicidade , Feminino , Glucocorticoides/toxicidade , Masculino , Microglia/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
15.
Front Pharmacol ; 9: 219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615903

RESUMO

The exposure to supra-physiological levels of glucocorticoids in prenatal life can lead to a long-term impact in brain cytoarchitecture, increasing the susceptibility to neuropsychiatric disorders. Dexamethasone, an exogenous glucocorticoid widely used in pregnant women in risk of preterm delivery, is associated with higher rates of neuropsychiatric conditions throughout life of the descendants. In animal models, prenatal dexamethasone exposure leads to anxious-like behavior and increased susceptibility to depressive-like behavior in adulthood, concomitant with alterations in neuronal morphology in brain regions implicated in the control of emotions and mood. The pharmacologic blockade of the purinergic adenosine A2A receptor, which was previously described as anxiolytic, is also able to modulate neuronal morphology, namely in the hippocampus. Additionally, recent observations point to an interaction between glucocorticoid receptors (GRs) and adenosine A2A receptors. In this work, we explored the impact of dexamethasone on neuronal morphology, and the putative implication of adenosine A2A receptor in the mediation of dexamethasone effects. We report that in vitro hippocampal neurons exposed to dexamethasone (250 nM), in the early phases of development, exhibit a polarized morphology alteration: dendritic atrophy and axonal hypertrophy. While the effect of dexamethasone in the axon is dependent on the activation of adenosine A2A receptor, the effect in the dendrites relies on the activation of GRs, regardless of the activation of adenosine A2A receptor. These results support the hypothesis of the interaction between GRs and adenosine A2A receptors and the potential therapeutic value of modulating adenosine A2A receptors activation in order to prevent glucocorticoid-induced alterations in developing neurons.

16.
Electrophoresis ; 38(22-23): 2975-2980, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28683160

RESUMO

Affinity chromatography based on amino acids as interacting ligands was already indicated as an alternative compared to ion exchange or hydrophobic interaction for plasmid DNA purification. Understanding the recognition mechanisms occurring between histidine-based ligands and nucleic acids enables more efficient purification of a DNA vaccine, as the binding and elution conditions can be adjusted in order to enhance the purification performance. Decreasing pH to slightly acidic conditions increases the positive charge of histidine ligand, what influences the type of interaction between chromatographic support and analytes. This was proven in this work, where hydrophobic effects established in the presence of ammonium sulfate were affected at pH 5.0 in comparison to pH 8.0, while electrostatic and cation-π interactions were intensified. Histidine ligand at pH 5.0 interacts with phosphate groups or aromatic rings of plasmid DNA. Due to different responses of RNA and pDNA on mobile phase changes, the elution order between RNA and pDNA was changed with mobile phase pH decrease from 8.0 to 5.0. The phenomenon was more evident with L-histidine ligand due to more hydrophilic character, leading to an improved selectivity of L-histidine-modified chromatographic monolith, allowing the product recovery with 99% of purity (RNA removal). With the 1-benzyl- L-histidine ligand, stronger and less selective interactions with the nucleic acids were observed due to the additional hydrophobicity associated with the phenyl aromatic ring. Optimization of sample displacement chromatography parameters (especially (NH4 )2 SO4 concentration) at slightly acidic pH enabled excellent isolation of pDNA, by the removal of RNA in a negative mode, with binding capacities above 1.5 mg pDNA per mL of chromatographic support.


Assuntos
Cromatografia de Afinidade/métodos , Histidina/química , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Vacinas contra Papillomavirus/isolamento & purificação , Plasmídeos/isolamento & purificação , Proteínas Repressoras/genética , Vacinas de DNA/isolamento & purificação , DNA/isolamento & purificação , Histidina/metabolismo , Ligantes , Vacinas contra Papillomavirus/genética , Plasmídeos/genética , Vacinas de DNA/genética
17.
Neurodegener Dis ; 15(2): 70-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25871488

RESUMO

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is the second most common early-onset dementia. Over the last few decades, a growing number of evidence suggests mitochondrial involvement in neurodegeneration, namely modifications of mitochondrial DNA (mtDNA) contributing to energy impairment. OBJECTIVE: To sequence the 7 mitochondrially encoded complex I (MT-ND) genes in 70 FTLD patients and investigate mitochondrial respiratory chain (MRC) complex I activity. METHODS: A sample of 70 patients was studied (39 females and 31 males; age range: 38-82 years, mean ± SD: 63 ± 11 years) with a probable diagnosis of FTLD. Total DNA was extracted from peripheral blood, and sequencing analysis of 7 MT-NDn (1, 2, 3, 4L, 4, 5, 6) genes was performed. Variants identified were submitted to in silico study. Spectrophotometric evaluation of MRC activity in lymphocytes was performed, and results were compared with age-matched controls. RESULTS: A total of 358 (161 different) alterations were found in 92.9% of patients. According to in silico analysis of nonsynonymous variants, only 5 variations are possibly or probably damaging. Complex I activity is significantly decreased in patients. CONCLUSION: To our knowledge, this is the first report of the complete sequence of the MT-ND genes in FTLD patients and correlation with MRC activity. The high number of mtDNA variations identified and a significant decrease in complex I activity suggest a possible involvement of mtDNA alterations in FTLD. Although the majority of these alterations are not primarily pathogenic, an interaction with other mutations may occur, leading to the disease, worsening its expression or influencing age of onset.


Assuntos
Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/fisiopatologia , Genótipo , Mutação/genética , NADH Desidrogenase/genética , Fenótipo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Associação Genética , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Estatística como Assunto
18.
J Med Virol ; 85(12): 2119-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24009184

RESUMO

John Cunningham virus (JCV) infects chronically human populations worldwide and probably might confer a higher risk for colorectal cancer (CRC). The prevalence of JCV DNA has been determined in normal colon mucosa and compared it with different degrees of colorectal lesions, as well as viral presence in the urine of the individuals in the study. JCV DNA was detected by a nested-PCR approach targeting the JCV small-t antigen in 100 healthy controls, and 100 patients undergoing biopsy for diagnosis of colorectal disorders. JCV DNA was detected in 40% of normal mucosa from controls and patients. JCV DNA presence in urine was also similar in controls and patients (37-41% range). JCV DNA detection in normal mucosa and urine reflects the infected population in Portugal. However, in cases with colorectal tumor lesions, JCV DNA was detected in 90% cases, independently of histological type or grade, and this increase was significantly higher with respect to its normal surrounding mucosa. This higher detection of JCV DNA in tumor lesions with respect to its own normal mucosa suggested that a selection for virus containing cells has occurred at some early stage in tumor initiation or progression. JCV may have a specific tropism for colon epithelial cells with some inherent predisposition that makes them more prone to oncogenic transformation, with selection of infected cells. Several p53 polymorphisms in intron 2, common to both groups, were more frequently detected in colorectal pathology cases. A novel p53 mutation in the 3' untranslated region (exon 11) was identified in 10 patients.


Assuntos
Adenocarcinoma/virologia , Adenoma/virologia , Pólipos do Colo/virologia , Neoplasias Colorretais/virologia , Mucosa Intestinal/virologia , Vírus JC/genética , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Adenocarcinoma/genética , Adenoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Pólipos do Colo/genética , Neoplasias Colorretais/genética , Análise Mutacional de DNA , DNA Viral/genética , DNA Viral/urina , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Razão de Chances , Infecções por Polyomavirus/genética , Proteína Supressora de Tumor p53/genética , Infecções Tumorais por Vírus/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...