Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 324(3): E226-E240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724126

RESUMO

Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.


Assuntos
Tecido Adiposo Marrom , Liraglutida , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Obesidade/metabolismo , Proteoma/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Ácido Succínico/uso terapêutico , Termogênese , Proteína Desacopladora 1/metabolismo
2.
J Cell Physiol ; 237(11): 4262-4274, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125908

RESUMO

Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3ß (GSK3ß) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3ß in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Treinamento Resistido , Camundongos , Humanos , Animais , Camundongos Obesos , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fígado/metabolismo , Insulina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Camundongos Endogâmicos C57BL
3.
Cells ; 11(13)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805082

RESUMO

BACKGROUND: The hypothalamic proopiomelanocortin (Pomc) neurons act as first-order sensors of systemic energy stores, providing signals that regulate caloric intake and energy expenditure. In experimental obesity, dietary saturated fatty acids affect Pomc endopeptidases (PCs), resulting in the abnormal production of the neurotransmitters α-melanocyte-stimulating hormone (α-MSH) and ß-endorphin, thus impacting energy balance. The cAMP response element-binding protein (CREB) is one of the transcription factors that control the expression of Pomc endopeptidases; however, it was previously unknown if dietary fats could affect CREB and consequently the expression of Pomc endopeptidases. METHODS: Here, we used single-cell RNA sequencing analysis, PCR, immunoblot, ELISA and immunofluorescence histological assays to determine the impact of a high-fat diet (HFD) on the expression and function of hypothalamic CREB and its impact on the melanocortinergic system. RESULTS: The results indicate that CREB is expressed in arcuate nucleus Pomc neurons and is activated as early as nine hours after the introduction of a high-fat diet. The inhibition of hypothalamic CREB using a short-hairpin RNA lentiviral vector resulted in increased diet-induced body-mass gain and reduced energy expenditure. This was accompanied by reduced expression of the Pomc endopeptidases, protein convertase 2, which are encoded by Pcsk2, and by the loss of the high-fat-diet-induced effect to inhibit the production of α-MSH. CONCLUSIONS: This study provides the first evidence for the involvement of CREB in the abnormal regulation of the hypothalamic Pomc endopeptidase system in experimental obesity.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Pró-Opiomelanocortina , Dieta Hiperlipídica , Endopeptidases , Humanos , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 2 , alfa-MSH/farmacologia
4.
J Neurosci ; 41(48): 10004-10022, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34675088

RESUMO

Nescient helix-loop-helix 2 (NHLH2) is a hypothalamic transcription factor that controls the expression of prohormone convertase 1/3, therefore having an impact on the processing of proopiomelanocortin and thus on energy homeostasis. Studies have shown that KO of Nhlh2 results in increased body mass, reduced physical activity, and hypogonadism. In humans, a polymorphism of the NHLH2 gene is associated with obesity; and in Prader-Willi syndrome, a condition characterized by obesity, hypogonadism and behavioral abnormalities, the expression of NHLH2 is reduced. Despite clinical and experimental evidence suggesting that NHLH2 could be a good target for the treatment of obesity, no previous study has evaluated the impact of NHLH2 overexpression in obesity. Here, in mice fed a high-fat diet introduced right after the arcuate nucleus intracerebroventricular injection of a lentivirus that promoted 40% increase in NHLH2, there was prevention of the development of obesity by a mechanism dependent on the reduction of caloric intake. When hypothalamic overexpression of NHLH2 was induced in previously obese mice, the beneficial impact on obesity-associated phenotype was even greater; thus, there was an 80% attenuation in body mass gain, reduced whole-body adiposity, increased brown adipose tissue temperature, reduced hypothalamic inflammation, and reduced liver steatosis. In this setting, the beneficial impact of hypothalamic overexpression of NHLH2 was a result of combined effects on caloric intake, energy expenditure, and physical activity. Moreover, the hypothalamic overexpression of NHLH2 reduced obesity-associated anxiety/depression behavior. Thus, we provide an experimental proof of concept supporting that hypothalamic NHLH2 is a good target for the treatment of obesity.SIGNIFICANCE STATEMENT Obesity is a highly prevalent medical condition that lacks an effective treatment. The main advance provided by this study is the demonstration of the beneficial metabolic and behavioral outcomes resulting from the overexpression of NHLH2 in the hypothalamus. When NHLH2 was overexpressed simultaneously with the introduction of a high-fat diet, there was prevention of obesity by a mechanism dependent on reduced caloric intake. Conversely, when NHLH2 was overexpressed in previously obese mice, there was reduction of the obese phenotype because of a combination of reduced caloric intake, increased physical activity, and increased thermogenesis. In addition, the overexpression of NHLH2 reduced anxiety/depression-like behavior. Thus, NHLH2 emerges as a potential target for the combined treatment of obesity and its associated anxiety/depression-like behavior.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Obesidade/metabolismo , Animais , Ansiedade/metabolismo , Índice de Massa Corporal , Depressão/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Obesidade/psicologia
5.
Brain Behav Immun ; 87: 272-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31863824

RESUMO

Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.


Assuntos
Hipotálamo , Interleucina-17 , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos , Humanos , Hipotálamo/metabolismo , Camundongos , Pró-Opiomelanocortina/metabolismo
6.
J Cell Biochem ; 120(10): 18186-18192, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144370

RESUMO

Obesity and aging lead to abnormal transforming growth factor-ß1 (TGF-ß1) signaling in the hypothalamus, triggering the imbalance on glucose metabolism and energy homeostasis. Here, we determine the effect of acute exercise on TGF-ß1 expression in the hypothalamus of two models of obesity in mice. The bioinformatics analysis was performed to evaluate the correlation between hypothalamic Tgf-ß1 messenger RNA (mRNA) and genes related to thermogenesis in the brown adipose tissue (BAT) by using a large panel of isogenic BXD mice. Thereafter, leptin-deficient (ob/ob) mice and obese C57BL/6 mice fed on a high-fat diet (HFD) were submitted to the acute exercise protocol. Transcriptomic analysis by using BXD mouse reference population database revealed that hypothalamic Tgf-ß1 mRNA is negatively correlated with genes related to thermogenesis in brown adipose tissue of BXD mice, such as peroxisome proliferator-activated receptor gamma coactivator and is positively correlated with respiratory exchange ratio. In agreement with these results, leptin-deficient (ob/ob) and HFD-fed mice displayed high levels of Tgf-ß1 mRNA in the hypothalamus and reduction of Pgc1α mRNA in BAT. Interestingly, an acute exercise session reduced TGF-ß1 expression in the hypothalamus, increased Pgc1α mRNA in the BAT and reduced food consumption in obese mice. Our results demonstrated that acute physical exercise suppressed hypothalamic TGF-ß1 expression, increasing Pgc1α mRNA in BAT in obese mice.


Assuntos
Regulação para Baixo , Hipotálamo/metabolismo , Obesidade/genética , Condicionamento Físico Animal/fisiologia , Fator de Crescimento Transformador beta1/genética , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Perfilação da Expressão Gênica/métodos , Leptina/deficiência , Leptina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Termogênese/genética , Fator de Crescimento Transformador beta1/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1126-1137, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738810

RESUMO

In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.


Assuntos
Perfilação da Expressão Gênica , Glucose/metabolismo , Hipotálamo/metabolismo , Inflamação/genética , Obesidade/genética , Receptores de Quimiocinas/genética , Animais , Astrócitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Hipotálamo/citologia , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo
8.
Brain Behav Immun ; 78: 78-90, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30660601

RESUMO

Obesity-associated hypothalamic inflammation plays an important role in the development of defective neuronal control of whole body energy balance. Because dietary fats are the main triggers of hypothalamic inflammation, we hypothesized that CD1, a lipid-presenting protein, may be involved in the hypothalamic inflammatory response in obesity. Here, we show that early after the introduction of a high-fat diet, CD1 expressing cells gradually appear in the mediobasal hypothalamus. The inhibition of hypothalamic CD1 reduces diet-induced hypothalamic inflammation and rescues the obese and glucose-intolerance phenotype of mice fed a high-fat diet. Conversely, the chemical activation of hypothalamic CD1 further increases diet-induced obesity and hypothalamic inflammation. A bioinformatics analysis revealed that hypothalamic CD1 correlates with transcripts encoding for proteins known to be involved in diet-induced hypothalamic abnormalities in obesity. Thus, CD1 is involved in at least part of the hypothalamic inflammatory response in diet-induced obesity and its modulation affects the body mass phenotype of mice.


Assuntos
Antígenos CD1/metabolismo , Hipotálamo/imunologia , Obesidade/metabolismo , Animais , Antígenos CD1/imunologia , Biologia Computacional/métodos , Dieta Hiperlipídica , Gorduras na Dieta , Metabolismo Energético , Inflamação/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos , Obesidade/imunologia
9.
EBioMedicine ; 39: 448-460, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30522931

RESUMO

BACKGROUND: The Iroquois homeobox 3 (Irx3) gene has been identified as a functional long-range target of obesity-associated variants within the fat mass and obesity-associated protein (FTO) gene. It is highly expressed in the hypothalamus, and both whole-body knockout and hypothalamic restricted abrogation of its expression results in a lean phenotype, which is mostly explained by the resulting increased energy expenditure in the brown adipose tissue. Because of its potential implication in the pathogenesis of obesity, we evaluated the hypothalamic cell distribution of Irx3 and the outcomes of inhibiting its expression in a rodent model of diet-induced obesity. METHODS: Bioinformatics tools were used to evaluate the correlations between hypothalamic Irx3 and neurotransmitters, markers of thermogenesis and obesity related phenotypes. Droplet-sequencing analysis in >20,000 hypothalamic cells was used to explore the types of hypothalamic cells expressing Irx3. Lentivirus was used to inhibit hypothalamic Irx3 and the resulting phenotype was studied. FINDINGS: IRX3 is expressed predominantly in POMC neurons. Its expression is inhibited during prolonged fasting, as well as when mice are fed a high-fat diet. The partial inhibition of hypothalamic Irx3 using a lentivirus resulted in increased diet-induced body mass gain and adiposity due to increased caloric intake and reduced energy expenditure. INTERPRETATION: Contrary to the results obtained when lean mice are submitted to complete inhibition of Irx3, partial inhibition of hypothalamic Irx3 in obese mice causes an exacerbation of the obese phenotype. These data suggest that at least some of the Irx3 functions in the hypothalamus are regulated according to a hormetic pattern, and modulation of its expression can be a novel approach to modifying the body's energy-handling regulation. FUND: Sao Paulo Research Foundation grants 2013/07607-8 (LAV) and 2017/02983-2 (JDJ); NIH grants R01DK083567 (YBK).


Assuntos
Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Obesidade/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Peso Corporal , Linhagem Celular , Biologia Computacional/métodos , Modelos Animais de Doenças , Ingestão de Energia , Metabolismo Energético , Jejum/metabolismo , Humanos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Fenótipo , Análise de Sequência de RNA
10.
EBioMedicine ; 39: 436-447, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502051

RESUMO

BACKGROUND: Inflammation is the most relevant mechanism linking obesity with insulin-resistance and metabolic disease. It impacts the structure and function of tissues and organs involved in metabolism, such as the liver, pancreatic islets and the hypothalamus. Brown adipose tissue has emerged as an important component of whole body energy homeostasis, controlling caloric expenditure through the regulation of non-shivering thermogenesis. However, little is known about the impact of systemic inflammation on the structure and function of brown adipose tissue. METHODS: The relations between IL10 and mitochondria structure/function and also with thermogenesis were evaluated by bioinformatics using human and rodent data. Real-time PCR, immunoblot, fluorescence and transmission electron microscopy were employed to determine the effect of IL10 in the brown adipose tissue of wild type and IL10 knockout mice. FINDINGS: IL10 knockout mice, a model of systemic inflammation, present severe structural abnormalities of brown adipose tissue mitochondria, which are round-shaped with loss of cristae structure and increased fragmentation. IL10 deficiency leads to newborn cold intolerance and impaired UCP1-dependent brown adipose tissue mitochondrial respiration. The reduction of systemic inflammation with an anti-TNFα monoclonal antibody partially rescued the structural but not the functional abnormalities of brown adipose tissue mitochondria. Using bioinformatics analyses we show that in both humans and mice, IL10 transcripts correlate with mitochondrial lipid metabolism and caspase gene expression. INTERPRETATION: IL10 and systemic inflammation play a central role in the regulation of brown adipose tissue by controlling mitochondrial structure and function. FUND: Sao Paulo Research Foundation grant 2013/07607-8.


Assuntos
Tecido Adiposo Marrom/citologia , Inflamação/patologia , Interleucina-10/genética , Mitocôndrias/patologia , Estremecimento/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Caspases/genética , Linhagem Celular , Temperatura Baixa , Biologia Computacional/métodos , Metabolismo Energético , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína Desacopladora 1/metabolismo
11.
J Cell Physiol ; 233(12): 9426-9436, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30063084

RESUMO

Hypothalamic sphingosine-1-phosphate receptor 1 (S1PR1), the G protein-coupled receptor 1 of sphingosine-1-phosphate, has been described as a modulator in the control of energy homeostasis in rodents. However, this mechanism is still unclear. Here, we evaluate the role of interleukin 6 (IL-6) associated with acute physical exercise in the control of the hypothalamic S1PR1-signal transducer and activator of transcription 3 (STAT3) axis. Acute exercise session and an intracerebroventricular IL-6 injection increased S1PR1 protein content and STAT3 phosphorylation in the hypothalamus of lean and obese mice accompanied by a reduction in food consumption. Transcriptome analysis indicated a strong positive correlation between Il-6 and S1pr1 messenger RNA in several tissues of genetically diverse BXD mice strains and humans, including in the hypothalamus. Interestingly, exercise failed to stimulate the S1PR1-STAT3 axis in IL-6 knockout mice and the disruption of hypothalamic-specific IL-6 action blocked the anorexigenic effects of exercise. Taken together, our results indicate that physical exercise modulates the S1PR1 protein content in the hypothalamus, through the central action of IL-6.


Assuntos
Hipotálamo/metabolismo , Interleucina-6/metabolismo , Condicionamento Físico Animal , Receptores de Lisoesfingolipídeo/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Humanos , Injeções Intraventriculares , Interleucina-6/administração & dosagem , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Esfingosina-1-Fosfato
12.
Life Sci ; 194: 98-103, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273527

RESUMO

AIMS: Sestrins, a class of stress-related proteins, is involved in the control of aging-induced organic dysfunctions and metabolic control. However, the factors that modulate the levels of Sestrins are poorly studied. Here, we evaluated the effects of acute and chronic aerobic exercise on Sestrin 1 (Sesn1) and Sesn2 protein contents in the skeletal muscle of mice. MAIN METHODS: Male C57BL/6J mice performed an acute or chronic (4weeks) exercise protocols on a treadmill running at 60% of the peak workload. Then, the quadriceps muscle was removed and analyzed by Western blot. Bioinformatics analysis was also performed to evaluate Sesn1 and Sesn2 mRNA in the skeletal muscle and phenotypic pattern in a large panel of isogenic strains of BXD mice. KEY FINDINGS: While acute aerobic exercise increased Sesn1 accumulation and induced a discrete augment of Sesn2 protein content and AMPK threonine phosphorylation, chronic exercise reduced the basal levels of Sesn1 and Sesn2 as well as of AMPK threonine phosphorylation in the quadriceps muscles of C57BL/6J mice. In accordance with these experimental approaches, transcriptomic analysis revealed that Sesn1 and Sesn2 mRNA levels in the skeletal muscle were inversely correlated with the locomotor activity in several strains of BXD mice. SIGNIFICANCE: Our data suggest that physical exercise has role on Sestrin1 and Sestrin2 expression on skeletal muscle, providing new insights into the mechanism by which physical exercise affects stress-related proteins in skeletal muscles.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Músculo Esquelético/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Quinases Ativadas por AMP/análise , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Ciclo Celular/análise , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/análise , Peroxidases , Fosforilação , Condicionamento Físico Animal , Corrida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...