Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142282, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719120

RESUMO

The use of Sargassum spp., a brown invasive algae, for the production of biochars (BCs) or activated carbons (ACs) and their efficiency to sequestrate chlordecone (CLD) in soil has been recently suggested. The objective of this study was to assess the potential of microwave prepared Sargasso biochar (BCS) amendment in Andosol on the bioavailability of chlordecone in laying hens and piglets, when exposed to this matrix. The efficiency of BCS was compared to a commercial activated carbon, DARCO® (ACD), used as a positive control and to an unamended soil. Samples of CLD-contaminated Andosol were amended with 2% of each carbonaceous matrix and let maturing for 3 months. Thereafter, adequate doses of soil were administered into the laying hens and piglets diets every day during the exposure phase, to simulate involuntary soil ingestion which may happen in practical conditions when animals are reared outside. Finally, bioavailability tests were carried out on target tissue (liver, muscle, adipose tissues and egg yolk). The results showed that the highest reduction of CLD bioavailability was obtained with ACD in both animal species. For laying hens, ACD showed reductions of around 60% (liver: 59%, muscle: 57% and egg yolk: 56%) whereas the BCS showed reduction of around 30% (liver: 31%, muscle: 26% and egg yolk: 30%) compared to the unamended soil. For piglets, only the liver showed interpretable results with reduction of 65% with ACD and 41% with BCS. Overall, BCS is efficient reducing CLD availability but in a lower extend than ACD. This discrepancy may be explained by the variations of physico-chemical characteristics that exist between the two matrices, resulting, from the additional activation phase for DARCO®. Therefore, to improve the efficiency of BCS it would be interesting to move towards DARCO® characteristics by determining out the optimal microwave pyrolysis parameters.

2.
J Xenobiot ; 14(1): 267-284, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38390996

RESUMO

Biochars (BCs) and activated carbons (ACs) are well-known carbon-rich materials that are being increasingly studied in environmental sciences for water treatment applications to remediate pollutant sequestration in soil. This study aimed to assess the impact of Sargasso BC particle size and amendment rate on the environmental availability of DDT and DDT metabolites in two distinct Kazakh soils. These two soils were collected in the vicinity of storehouse facilities in Kyzylkairat and Beskainar that store banned pesticides. They presented very distinct concentration levels of DDT and DDT metabolites. Three different types of carbonaceous matrices were tested: Sargasso BC and two commercial ACs (ORBOTM and DARCO©). For the granulometry effect, Sargasso BC was ground, and two particle sizes were tested (<150 µm, >150 µm) and compared to an unground material. Four distinct application rates were tested (0.25, 0.5, 1, and 2% (w/w)). After a three-month maturation period, environmental availability was assessed using an ISO/DIS 16751, part B-modified methodology. Interestingly, the best reductions in DDT environmental availability were obtained with the finest particle size (both ACs and Sargasso BC < 150 µm). More specifically, the effectiveness of the strategy seemed to depend on many factors. Firstly, a clear soil effect was demonstrated, suggesting that the more contaminated the soil, the more efficient this strategy may be. Secondly, the results showed that an increase in the amendment rate improves the immobilization of DDT and DDT metabolites. The sequestration material demonstrated different efficiency values (up to 58 ± 4% for Sargasso BC < 150 µm and 85 ± 4% for DARCO at a 2% application rate). Finally, a clear molecule effect was displayed, demonstrating the following immobilization order: p,p'-DDE > p,p'-DDD > p,p'-DDT > o,p'-DDT.

3.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570852

RESUMO

Since 2011, substantial amounts of pelagic Sargassum algae have washed up along the Caribbean beaches and the Gulf of Mexico, leading to negative impacts on the economy and the environment of those areas. Hence, it is now crucial to develop strategies to mitigate this problem while valorizing such invasive biomass. This work deals with the successful exploitation of this pelagic Sargassum seaweed for the fabrication of carbon materials that can be used as electrodes for supercapacitors. Pelagic Sargassum precursors were simply pyrolyzed at temperatures varying from 600 to 900 °C. The resultant carbonaceous materials were then extensively characterized using different techniques, such as nitrogen adsorption for textural characterization, as well as X-ray photoelectron (XPS), Fourier transform infrared spectroscopies (FT-IR) and scanning electron microscopy (SEM), to understand their structures and functionalities. The electrochemical properties of the carbon materials were also tested for their performance as supercapacitors using cyclic voltammetry (CV), the galvanostatic method and electrochemical impedance spectroscopy analyses (EIS). We managed to have a large specific surface, i.e., 1664 m2 g-1 for biochar prepared at 800 °C (CS800). Eventually, CS800 turned out to exhibit the highest capacitance (96 F g-1) over the four samples, along with the highest specific surface (1664 m2 g-1), with specific resistance of about 0.07 Ω g -1.

4.
J Mol Model ; 29(6): 196, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266689

RESUMO

CONTEXT: Chlordecone (CLD) and ß-hexachlorocyclohexane (ß-HCH) are chlorinated pesticides that coexist as persistent organic pollutants in the groundwater of several countries in the Caribbean, being an environmental issue. This work evaluates theoretically the competitive formation of host-guest complexes pesticides@cyclodextrines (CDs) as an alternative for water purification and selective separation of pesticides. METHODS: Quantum mechanical calculations based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were used to achieve information on geometries, energies, structure, and dynamics of guest-host complexes in the gas phase, implicit solvent medium, and in aqueous solutions. RESULTS: DFT studies showed that interactions of both pesticides with CDs are mediated by steric factors and guided by maximization of the hydrophobic interactions either with the other pesticide or with the CD cavity's inner atoms. MD results corroborate the formation of stable complexes of both pesticides with the studied CDs. α-CD exhibited a preference for the smaller ß-HCH molecule over the CLD that could not perturb the formed complex. CONCLUSIONS: The simulation of competitive formation with γ-CD illustrated that this molecule could accommodate both pesticides inside its cavity. These results suggest that CDs with smaller cavity sizes such as α-CD could be used for selective separation of ß-HCH from CLD in water bodies, while γ-CD could be used for methods that aim to remove both pesticides at the same time.

5.
Environ Sci Pollut Res Int ; 30(3): 5873-5880, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35982391

RESUMO

The use of biochars (BCs) and activated carbons as a way of sequestering soil-bound pollutants such as chlordecone (CLD) is increasingly being studied. This study aims at assessing the impact of Sargassum BC/AC particle size and Sargassum BC amendment rate on CLD adsorption in Nitisol and in Andosol. Four different types of carbonaceous matrices were tested: Sargasso carbon activated by phosphoric acid (SargH3PO4), Sargasso carbon activated by steam (SargH2O), biochar of Sargasso (Ch Sarg700), and a commercial activated carbon (ORBO™). In a first experiment, CLD contaminated Andosol and Nitisol were amended with 2% of each carbonaceous matrix divided into four particles size classes (< 50 µm, 50-150 µm, 150-200 µm, and > 200 µm). In a second experiment, the contaminated soils were amended with the biochar of Sargasso at five application rates (0, 0.25, 0.5, 1, and 2% (w/w)). After a 4-month aging, environmental availability tests were carried out on the soils of both experiments. The results of the first experiment showed that the best reductions of CLD environmental availability were obtained in both soils with the biochar of Sargasso and the ORBO™. More specifically, in nitisol, particle size under 50 µm of biochar of Sargasso and AC ORBO™ showed a CLD environmental availability reduction up to 72 ± 2.6% and 79 ± 2.6%. In Andosol, there was no significant difference between the three particle sizes (< 50 µm, 50-150 µm, and 150-200 µm) of the biochar of Sargasso on the reduction of environmental availability (average reduction of 43 ± 2.5%). The results of the second experiment showed that an amendment rate increase improves the immobilization of CLD. When the amendment rate was increased from 0.25 to 2%, the environmental availability was reduced by 43% in Nitisol and 50% in Andosol.


Assuntos
Clordecona , Inseticidas , Sargassum , Poluentes do Solo , Clordecona/análise , Carvão Vegetal , Inseticidas/análise , Solo , Tamanho da Partícula , Poluentes do Solo/análise
6.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144787

RESUMO

Adsorption is one of the most successful physicochemical approaches for removing heavy metal contaminants from polluted water. The use of residual biomass for the production of adsorbents has attracted a lot of attention due to its cheap price and environmentally friendly approach. The transformation of Sargassum-an invasive brown macroalga-into activated carbon (AC) via phosphoric acid thermochemical activation was explored in an effort to increase the value of Sargassum seaweed biomass. Several techniques (nitrogen adsorption, pHPZC, Boehm titration, FTIR and XPS) were used to characterize the physicochemical properties of the activated carbons. The SAC600 3/1 was predominantly microporous and mesoporous (39.6% and 60.4%, respectively) and revealed a high specific surface area (1695 m2·g-1). To serve as a comparison element, a commercial reference activated carbon with a large specific surface area (1900 m2·g-1) was also investigated. The influence of several parameters on the adsorption capacity of AC was studied: solution pH, solution temperature, contact time and Cr(VI) concentration. The best adsorption capacities were found at very acid (pH 2) solution pH and at lower temperatures. The adsorption kinetics of SAC600 3/1 fitted well a pseudo-second-order type 1 model and the adsorption isotherm was better described by a Jovanovic-Freundlich isotherm model. Molecular dynamics (MD) simulations confirmed the experimental results and determined that hydroxyl and carboxylate groups are the most influential functional groups in the adsorption process of chromium anions. MD simulations also showed that the addition of MgCl2 to the activated carbon surface before adsorption experiments, slightly increases the adsorption of HCrO4- and CrO42- anions. Finally, this theoretical study was experimentally validated obtaining an increase of 5.6% in chromium uptake.


Assuntos
Sargassum , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Nitrogênio , Água/química , Poluentes Químicos da Água/química
7.
Environ Geochem Health ; 44(6): 1911-1920, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34686921

RESUMO

Chlordecone (Kepone) (CLD) is a highly persistent pesticide formerly used in the French West Indies. High levels of this pesticide may be found in soils and constitute a subsequent source of contamination for outdoor-reared animals due to involuntary ingestion of consistent amounts of soil. In that context, carbonaceous materials may be used to amend soil to efficiently decrease the bioavailability of such organic pollutants. The present study aims to assess the efficiency of diverse amendments of a contaminated Guadeloupe nitisol using two physiologically based approaches. A set of 5 carbonaceous materials (ORBO, DARCO, Coco CO2, Oak P1.5, Sargasso biochar) was tested and used to amend Nitisol at 2% (mass basis). Bioaccessibility assessment was performed using the Ti-PBET assay (n = 4). The relative bioavailability part involved 24 piglets randomly distributed into 6 experimental groups (n = 4). All groups were exposed during 10 days to a contaminated soil, amended or not with carbon-based matrices. A significant decrease in relative bioaccessibility and CLD concentrations in liver were observed for all amended groups in comparison to the control group, with the exception of the biochar amended soil in the bioaccessibility assay (p < 0.05). Extent of this reduction varied from 22 to more than 82% depending on the carbonaceous matrix. This decrease was particularly important for the ORBO™ activated carbon for which bioaccessibility and relative bioavailability were found lower than 10% for both methodologies.


Assuntos
Clordecona , Poluentes do Solo , Animais , Clordecona/análise , Inseticidas/análise , Poluentes do Solo/análise , Suínos
8.
J Mol Graph Model ; 111: 108057, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34847519

RESUMO

Rapamycin (or sirolimus) is a macrolide that has shown to be useful as an immunosuppressant and that was studied in metabolic, neurological, or genetic disorders. Rapamycin is a specific natural inhibitor of the mechanistic target of rapamycin (mTOR) that is a kinase protein playing a pivotal role in cell growth and proliferation by activation of several metabolic processes. This work aimed to evaluate the utility of several compounds obtained from rapamycin and its semi-synthetic analogs everolimus and temsirolimus as possible radiopharmaceuticals oriented to this protein. Density Functional Theory calculations of these molecules were made and further analysis of the dual descriptor, charges populations, and of the electrostatic potential surfaces were performed. Molecular docking simulations were used to evaluate the interactions of the rapamycin with the studied candidates. They allowed us to propose two strategies for the synthesis of novel compounds based on electrophilic reactions. Molecular docking results also helped us to eliminate molecules that did not interact correctly with the target. Finally, we found for the first time, that the novel compounds synthesized through the electrophilic addition reaction that employed 18F-selectfluor, should maintain the biological activity of original compounds and could be suitable as Positron Emission Tomography radiopharmaceuticals targeting mTOR Complex1 system.


Assuntos
Compostos Radiofarmacêuticos , Serina-Treonina Quinases TOR , Inibidores de MTOR , Simulação de Acoplamento Molecular , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/farmacologia
9.
Bioinform Adv ; 2(1): vbac010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699379

RESUMO

Summary: Sequencing and other biological data are now more frequently available and at a lower price. Mutual tools and strategies are needed to analyze the huge amount of heterogeneous data generated by several research teams and devices. Bioinformatics represents a growing field in the scientific community globally. This multidisciplinary field provides a great amount of tools and methods that can be used to conduct scientific studies in a more strategic way. Coordinated actions and collaborations are needed to find more innovative and accurate methods for a better understanding of real-life data. A wide variety of organizations are contributing to KaruBioNet in Guadeloupe (French West Indies), a Caribbean archipelago. The purpose of this group is to foster collaboration and mutual aid among people from different disciplines using a 'one health' approach, for a better comprehension and surveillance of humans, plants or animals' health and diseases. The KaruBioNet network particularly aims to help researchers in their studies related to 'omics' data, but also more general aspects concerning biological data analysis. This transdisciplinary network is a platform for discussion, sharing, training and support between scientists interested in bioinformatics and related fields. Starting from a little archipelago in the Caribbean, we envision to facilitate exchange between other Caribbean partners in the future, knowing that the Caribbean is a region with non-negligible biodiversity which should be preserved and protected. Joining forces with other Caribbean countries or territories would strengthen scientific collaborative impact in the region. Information related to this network can be found at: http://www.pasteur-guadeloupe.fr/karubionet.html. Furthermore, a dedicated 'Galaxy KaruBioNet' platform is available at: http://calamar.univ-ag.fr/c3i/galaxy_karubionet.html. Availability and implementation Information about KaruBioNet is availabe at: http://www.pasteur-guadeloupe.fr/karubionet.html. Contact: dcouvin@pasteur-guadeloupe.fr. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834061

RESUMO

The influence of nitrogen-containing surface groups (SGs) onto activated carbon (AC) over the adsorption of chlordecone (CLD) and ß-hexachlorocyclohexane (ß-HCH) was characterized by a molecular modelling study, considering pH (single protonated SGs) and hydration effect (up to three water molecules). The interactions of both pollutants with amines and pyridine as basic SGs of AC were studied, applying the multiple minima hypersurface (MMH) methodology and using PM7 semiempirical Hamiltonian. Representative structures from MMH were reoptimized using the M06-2X density functional theory. The quantum theory of atoms in molecules (QTAIM) was used to characterize the interaction types in order understanding the adsorption process. A favorable association of both pesticides with the amines and pyridine SGs onto AC was observed at all pH ranges, both in the absence and presence of water molecules. However, a greater association of both pollutants with the primary amine was found under an acidic pH condition. QTAIM results show that the interactions of CLD and ß-HCH with the SGs onto AC are governed by Cl···C interactions of chlorine atoms of both pesticides with the graphitic surface. Electrostatic interactions (H-bonds) were observed when water molecules were added to the systems. A physisorption mechanism is suggested for CLD and ß-HCH adsorption on nitrogen-containing SGs of AC.

11.
Environ Sci Technol ; 55(5): 2968-2979, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33557520

RESUMO

The γ isomer of hexachlorocyclohexane (HCH), also known as lindane, is a carcinogenic persistent organic pollutant. Lindane was used worldwide as an agricultural insecticide. Legacy soil and groundwater contamination with lindane and other HCH isomers is still a big concern. The biotic reductive dechlorination of HCH to nondesirable and toxic lower chlorinated compounds such as monochlorobenzene (MCB) and benzene, among others, has been broadly documented. Here, we demonstrate that complete biodegradation of lindane to nontoxic end products is attainable using a sequential treatment approach with three mixed anaerobic microbial cultures referred to as culture I, II, and III. Biaugmentation with culture I achieved dechlorination of lindane to MCB and benzene. Culture II was able to dechlorinate MCB to benzene, and finally, culture III carried out methanogenic benzene degradation. Distinct Dehalobacter populations, corresponding to different 16S rRNA amplicon sequence variants in culture I and culture II, were responsible for lindane and MCB dechlorination, respectively. This study continues to highlight key roles of Dehalobacter as chlorobenzene- and HCH -respiring bacteria and demonstrates that sequential treatment with specialized anaerobic cultures may be explored at field sites in order to address legacy soil and groundwater contamination with HCH.


Assuntos
Hexaclorocicloexano , Inseticidas , Anaerobiose , Biodegradação Ambiental , RNA Ribossômico 16S/genética
12.
Environ Sci Pollut Res Int ; 27(33): 41122-41131, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32232761

RESUMO

Intensive use of the chlorinated pesticide chlordecone from the 1970s to 1993 to prevent crop damage in banana plantations of Guadeloupe and Martinique led to diffuse pollution of soils and surface waters, affecting both fauna and human beings in the contaminated areas. Since 2001, drinking water production plants have been equipped with filters containing activated carbon that must be treated after saturation. The objective of this work is to produce a hybrid material composed of activated carbon and vitamin B12 (VB12) for the degradation of chlordecone (CLD). The preparation of such a hybrid material is carried out by non-covalent fixation to achieve an eco-friendly solution for the serious environmental problem of contamination by chlorinated pesticides. It is thus proposed to degrade CLD by a physico-chemical treatment allowing salvage of the catalyst, which is adsorbed on the carbon surface to generate less waste that is inexpedient to treat. Activated carbon (AC) is produced locally from available sugarcane bagasse subjected to phosphoric acid activation. The main characteristics of this material are a major mesoporous structure (0.91%) and a specific (BET) surface area ranging from 1000 to 1500 m2 g-1. The experimental results showed that BagP1.5 has a high adsorption capacity for VB12 due to its large surface area (1403 m2 g-1). The binding of VB12 to the bagasse-derived AC is favoured at high temperatures. The adsorption is optimal at a pH of approximately 6. The maximum adsorption capacity of VB12 on the AC, deduced from the Langmuir model, was 306 mg g-1, confirming the high affinity between the two components. The hybrid material was characterised by FTIR, Raman, X-ray fluorescence spectroscopy and SEM analysis. CLD removal by this hybrid material was faster than that by VB12 or BagP1.5 alone. The CLD degradation products were characterised by mass spectrometry.


Assuntos
Clordecona , Inseticidas , Poluentes Químicos da Água , Adsorção , Anaerobiose , Celulose , Carvão Vegetal , Clordecona/análise , Guadalupe , Humanos , Inseticidas/análise , Martinica , Vitamina B 12
13.
PLoS One ; 15(4): e0231219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32282845

RESUMO

The historic use of chlordecone (C10Cl10O) as a pesticide to control banana weevil infestations has resulted in pollution of large land areas in the French West Indies. Although currently banned, chlordecone persists because it adsorbs strongly to soil and its complex bis-homocubane structure is stable, particularly under aerobic conditions. Abiotic chemical transformation catalyzed by reduced vitamin B12 has been shown to break down chlordecone by opening the cage structure to produce C9 polychloroindenes. More recently these C9 polychloroindenes were also observed as products of anaerobic microbiological transformation. To investigate the anaerobic biotransformation of chlordecone by microbes native to the French West Indies, microcosms were constructed anaerobically from chlordecone impacted Guadeloupe soil and sludge to mimic natural attenuation and eletron donor-stimulated reductive dechlorination. Original microcosms and transfers were incubated over a period of 8 years, during which they were repeatedly amended with chlordecone and electron donor (ethanol and acetone). Using LC-MS, chlordecone and degradation products were detected in all the biologically active microcosms. Observed products included monohydro-, dihydro- and trihydrochlordecone derivatives (C10Cl10-nO2Hn; n = 1,2,3), as well as "open cage" C9 polychloroindene compounds (C9Cl5-nH3+n n = 0,1,2) and C10 carboxylated polychloroindene derivatives (C10Cl4-nO2H4+n, n = 0-3). Products with as many as 9 chlorine atoms removed were detected. These products were not observed in sterile (poisoned) microcosms. Chlordecone concentrations decreased in active microcosms as concentrations of products increased, indicating that anaerobic dechlorination processes have occurred. The data enabled a crude estimation of partitioning coefficients between soil and water, showing that carboxylated intermediates sorb poorly and as a consequence may be flushed away, while polychlorinated indenes sorb strongly to soil. Microbial community analysis in microcosms revealed enrichment of anaerobic fermenting and acetogenic microbes possibly involved in anaerobic chlordecone biotransformation. It thus should be possible to stimuilate anaerobic dechlorination through donor amendment to contaminated soils, particularly as some metabolites (in particular pentachloroindene) were already detected in field samples as a result of intrinsic processes. Extensive dechlorination in the microcosms, with evidence for up to 9 Cl atoms removed from the parent molecule is game-changing, giving hope to the possibility of using bioremediation to reduce the impact of CLD contamination.


Assuntos
Clordecona/análise , Inseticidas/análise , Microbiologia do Solo , Solo/química , Anaerobiose , Biodegradação Ambiental , Conservação dos Recursos Naturais , Guadalupe , Poluentes do Solo/análise , Índias Ocidentais
14.
J Chem Inf Model ; 60(4): 2115-2125, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105472

RESUMO

The aim of this work is to describe the molecular inclusion of chlordecone with α-, ß-, and γ-cyclodextrin in aqueous solution using quantum mechanics. The guest-host complexes of chlordecone and cyclodextrins are modeled in aqueous solution using the multiple minima hypersurface methodology with a PM6-D3H4X semiempirical Hamiltonian, and the lowest energy minima obtained are reoptimized using the M06-2X density functional and the intermolecular interactions described using quantum theory of atoms in molecules (QTAIM). The studied complexes are classified according to the degree of inclusion, namely, total occlusion, partial occlusion, and external interaction. More stable complexes are obtained when γ-CD is used as the host molecule. The interactions characterized through QTAIM analysis are all of electrostatic nature, predominantly of dispersive type. In this work, a method based on the counterpoise correction is also discussed to mitigate the basis set superposition error in density functional theory calculations when using an implicit solvation model.


Assuntos
Clordecona , Ciclodextrinas , Teoria Quântica , Eletricidade Estática , Água
15.
Environ Sci Pollut Res Int ; 27(33): 41105-41116, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32052338

RESUMO

The chlordecone (CLD) and the ß-hexachlorocyclohexane (ß-HCH) are persistent organic pollutants with a great environmental stability that cause severe affectations to health. The concentration of these pesticides in the environment is low, which represent a problem for their determination, even for the modern analytical methods. The labeling of these compounds with an iodine radioisotope for their use as radiotracers is a potential solution to this problem. The present work studies the interaction of 1-iodochlordecone (I-CLD) and ß-1-iodo-pentachlorocyclohexane (I-ß-HCH) with cyclodextrins (CDs), during the formation of molecular inclusion complexes pesticide@CDs. The methodology of multiple minima hypersurfaces, quantic calculations based on density functional theory and a topologic study of electronic density were used to corroborate the stability of I-CLD@CDs and I-ß-HCH@CDs complexes. Three main types of guest-host complexes in relation to the occlusion grade were observed: with total occlusion, with partial occlusion and external interaction without occlusion. The more stable complexes are obtained when the γ-CD is the host molecule. The formed complexes with radiolabelled pollutants are analogous with the ones reported in previous works. These results confirm the utility of these complexes for the removal of organochlorine pesticides from polluted water and, also, demonstrate the possibility of using the I-CLD and the I-ß-HCH as possible radiotracers for these pollutants in further studies with environmental proposes.


Assuntos
Clordecona , Ciclodextrinas , Hidrocarbonetos Clorados , Praguicidas , beta-Ciclodextrinas , Hidrocarbonetos Clorados/análise , Praguicidas/análise
16.
Environ Sci Pollut Res Int ; 27(33): 41093-41104, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31975004

RESUMO

Chlordecone (kepone or CLD) was formerly used in French West Indies as an insecticide. Despite its formal ban in 1993, high levels of this pesticide are still found in soils. As such, sequestering matrices like biochars or activated carbons (ACs) may successfully decrease the bioavailability of halogenated compounds like CLD when added to contaminated soils. The present study intends (i) to produce contrasted sequestering matrices in order to (ii) assess their respective efficiency to reduce CLD environmental availability. Hence, the work was designed following two experimental steps. The first one consisted at producing different sequestering media (biochars and ACs) via pyrolysis and distinct activation processes, using two lignocellulosic precursors (raw biomass): oak wood (Quercus ilex) and coconut shell (Cocos nucifera). The chemical activation was carried out with phosphoric acid while physical activation was done with carbon dioxide and steam. In the second step, the CLD environmental availability was assessed either in an OECD artificial soil or in an Antillean contaminated nitisol (i.e., 2.1-1µg CLD per g of soil dry matter, DM), both amended with 5 wt% of biochar or 5 wt% of AC. These both steps aim to determine CLD environmental availability reduction efficiency of these media when added (i) to a standard soil material or (ii) to a soil representative of the Antillean CLD contamination context. Textural characteristics of the derived coconut and oak biochars and ACs were determined by nitrogen adsorption at 77 K. Mixed microporous and mesoporous textures consisting of high pore volume (ranging from 0.38 cm3.g-1 to 2.00 cm3.g-1) and specific (BET) surface areas from 299.9 m2.g-1 to 1285.1 m2.g-1 were obtained. Overall, soil amendment with biochars did not limit CLD environmental availability (environmental availability assay ISO/DIS 16751 Part B). When soil was amended with ACs, a significant reduction of the environmental availability in both artificial and natural soils was observed. AC soil amendment resulted in a reduced CLD transfer by at least 65% (P < 0.001) for all lignocellulosic matrices (excepted for coconut sample activated with steam, which displayed a 47% reduction). These features confirm that both pore structure and extent of porosity are of particular importance in the retention process of CLD in aged soil. Owing to its adsorptive properties, AC amendment of CLD-contaminated soils appears as a promising approach to reduce the pollutant transfer to fauna and biota.


Assuntos
Clordecona , Poluentes do Solo , Biomassa , Carvão Vegetal/análise , Clordecona/análise , Lignina , Solo , Poluentes do Solo/análise , Índias Ocidentais
17.
Environ Sci Technol ; 54(1): 255-265, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31830788

RESUMO

Intensive historical and worldwide use of pesticide formulations containing hexachlorocyclohexane (HCH) has led to widespread contamination. We derived four anaerobic enrichment cultures from HCH-contaminated soil capable of sustainably dechlorinating each of α-, ß-, γ-, and δ-HCH isomers stoichiometrically to benzene and monochlorobenzene (MCB). For each isomer, the dechlorination rates, inferred from production rates of the dechlorinated products, MCB and benzene, increased progressively from <3 to ∼12 µM/day over 2 years. The molar ratio of benzene to MCB produced was a function of the substrate isomer and ranged from ß (0.77 ± 0.15), α (0.55 ± 0.09), γ (0.13 ± 0.02), to δ (0.06 ± 0.02) in accordance with pathway predictions based on prevalence of antiperiplanar geometry. Data from 16S rRNA gene amplicon sequencing and quantitative PCR revealed significant increases in the absolute abundances of Pelobacter and Dehalobacter, most notably in the α-HCH and δ-HCH cultures. Cultivation with a different HCH isomer resulted in distinct bacterial communities, but similar archaeal communities. This study provides the first direct comparison of shifts in anaerobic microbial communities induced by the dechlorination of distinct HCH isomers. It also uncovers candidate microorganisms responsible for the dechlorination of α-, ß-, γ-, and δ-HCH, a key step toward better understanding and monitoring of natural attenuation processes and improving bioremediation technologies for HCH-contaminated sites.


Assuntos
Hexaclorocicloexano , Microbiota , Anaerobiose , Benzeno , Biodegradação Ambiental , Clorobenzenos , RNA Ribossômico 16S
18.
RSC Adv ; 9(47): 27484-27499, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529240

RESUMO

The present work aimed to study the guest-host complexes of ß-hexachlorocyclohexane (ß-HCH), a pesticide with high environmental stability that can cause severe health problems, with the most common cyclodextrins (α-, ß-, and γ-CDs). The formation reactions of these molecular inclusion complexes were addressed in this research. The multiple minima hypersurface methodology, quantum calculations based on density functional theory and a topological exploration of the electron density based on the quantum theory of atoms in molecules approach were used to characterize the interaction spaces of the pollutant with the three CDs. Additionally, charge distribution, charge transfer and dual descriptor analyses were employed to elucidate the driving forces involved in the formation of these molecular inclusion complexes. Three types of fundamental interactions were observed: total occlusion, partial occlusion and external interaction (non-occlusion). Finally, experiments were performed to confirm the formation of the studied complexes. The most stable complexes were obtained when γ-CD was the host molecule. The interactions between the pesticide and CDs have fundamentally dispersive natures, as was confirmed experimentally by spectroscopic results. All the obtained results suggest the possibility of using CDs for the purification and treatment of water polluted with ß-HCH.

19.
J Mol Graph Model ; 81: 146-154, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29554491

RESUMO

A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO- and O-), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO- and O- groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O-⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process.


Assuntos
Carbono/química , Clordecona/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Teoria da Densidade Funcional , Conformação Molecular , Propriedades de Superfície
20.
J Environ Sci Health B ; 53(2): 121-125, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148925

RESUMO

Intensive use of chlorinated pesticides from the 1960s to the 1990s has resulted in a diffuse contamination of soils and surface waters in the banana-producing areas of the French West Indies. The purpose of this research was, for the first time, to examine the degradation of two of these persistent pollutants - chlordecone (CLD) and beta-hexachlorocyclohexane (ß-HCH) in 1 mg L-1 synthetic aqueous solutions by means of photolysis, (photo-) Fenton oxidation and ozonation processes. Fenton oxidation is not efficient for CLD and yields less than 15% reduction of ß-HCH concentration in 5 h. Conversely, both molecules can be quantitatively converted under UV-Vis irradiation reaching 100% of degradation in 5 h, while combination with hydrogen peroxide and ferrous iron does not show any significant improvement except in high wavelength range (>280 nm). Ozonation exhibits comparable but lower degradation rates than UV processes. Preliminary identification of degradation products indicated that hydrochlordecone was formed during photo-Fenton oxidation of CLD, while for ß-HCH the major product peak exhibited C3H3Cl2 as most abundant fragment.


Assuntos
Clordecona/química , Hexaclorocicloexano/química , Biodegradação Ambiental , Peróxido de Hidrogênio/química , Inseticidas/química , Ferro/química , Oxirredução , Ozônio/química , Fotólise , Soluções , Raios Ultravioleta , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...