Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(2): 101380, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242120

RESUMO

Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Neutrófilos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Neoplasias/patologia , Antígeno CD52/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
2.
J Leukoc Biol ; 115(4): 695-705, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38114064

RESUMO

The advent of recent cutting-edge technologies has allowed the discovery and characterization of novel progenitors of human neutrophils, including SSCloCD66b+CD15+CD11b-CD49dhiproNeu1s, SSChiCD66b+CD15+CD11b-CD49dintproNeus2s, CD66b+CD15+CD11b+CD49d+CD101-preNeus, and Lin-CD66b+CD117+CD71+eNePs. In this research field, we recently identified CD66b-CD38+CD64dimCD115-, CD34+, and CD34dim/- cells exclusively committed to the neutrophil lineage (which we renamed as CD34+ and CD34dim/- neutrophil-committed progenitors), representing the earliest neutrophil precursors identifiable and sorted by flow cytometry. Moreover, based on their differential CD34 and CD45RA expression, we could identify 4 populations of neutrophil-committed progenitors: CD34+CD45RA-/NCP1s, CD34+CD45RA+/NCP2s, CD34dim/-CD45RA+/NCP3s, and CD34dim/-CD45RA-/NCP4s. This said, a very recent study by Ikeda and coworkers (PMID: 36862552) reported that neutrophil precursors, termed either neutrophil progenitors or "early neutrophil-committed progenitors," would generate immunosuppressive neutrophil-like CXCR1+CD14+CD16- monocytes. Hence, presuming that neutrophil progenitors/"early neutrophil-committed progenitors" correspond to neutrophil-committed progenitors, the selective neutrophil commitment that we attributed to neutrophil-committed progenitors is contradicted by Ikeda and coworkers' article. In this study, by performing a more analytical reevaluation at the phenotypic and molecular levels of the cells generated by neutrophil-committed progenitors 2 and 4 (selected as representatives of neutrophil-committed progenitors), we categorically exclude that neutrophil-committed progenitors generate neutrophil-like CXCR1+CD14+CD16- monocytes. Rather, we provide substantial evidence indicating that the cells generated by neutrophil progenitors/"early neutrophil-committed progenitors" are neutrophilic cells at a different stage of maturation, displaying moderate levels of CD14, instead of neutrophil-like CXCR1+CD14+CD16- monocytes, as pointed by Ikeda and coworkers. Hence, the conclusion that neutrophil progenitors/"early neutrophil-committed progenitors" aberrantly differentiate into neutrophil-like monocytes derives, in our opinion, from data misinterpretation.


Assuntos
Monócitos , Neutrófilos , Humanos , Neutrófilos/metabolismo , Monócitos/metabolismo , Antígenos CD34/metabolismo , Citometria de Fluxo
3.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958458

RESUMO

The advent of immune checkpoint inhibitors (ICIs), for instance, programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockers, has greatly improved the outcome of patients affected by non-small cell lung cancer (NSCLC). However, most NSCLC patients either do not respond to ICI monotherapy or develop resistance to it after an initial response. Therefore, the identification of biomarkers for predicting the response of patients to ICI monotherapy represents an urgent issue. Great efforts are currently dedicated toward identifying blood-based biomarkers to predict responses to ICI monotherapy. In this study, more commonly utilized blood-based biomarkers, such as the neutrophil-to-lymphocyte ratio (NLR) and the lung immune prognostic index (LIPI) score, as well as the frequency/number and activation status of various types of circulating innate immune cell populations, were evaluated in NSCLC patients at baseline before therapy initiation. The data indicated that, among all the parameters tested, low plasmacytoid dendritic cell (pDC), slan+-monocyte and natural killer cell counts, as well as a high LIPI score and elevated PD-L1 expression levels on type 1 conventional DCs (cDC1s), were independently correlated with a negative response to ICI therapy in NSCLC patients. The results from this study suggest that the evaluation of innate immune cell numbers and phenotypes may provide novel and promising predictive biomarkers for ICI monotherapy in NSCLC patients.

4.
Front Immunol ; 14: 1287656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965335

RESUMO

Introduction: Peripheral monocytes in humans are conventionally divided into classical (CL, CD14++CD16-), intermediate (INT, CD14++CD16+) and non-classical (NC, CD14dim/-CD16++) cells, based on their expression levels of CD14 and CD16. A major fraction of the NC-monocytes has been shown to express the 6-sulfo LacNAc (slan) antigen, but whether these slan+/NC-monocytes represent the prototypical non-classical monocytes or whether they are simply a sub-fraction with identical features as the remainder of NC monocytes is still unclear. Methods: We analyzed transcriptome (by bulk and single cell RNA-seq), proteome, cell surface markers and production of discrete cytokines by peripheral slan+/NC- and slan-/NC-monocytes, in comparison to total NC-, CL- and INT- monocytes. Results: By bulk RNA-seq and proteomic analysis, we found that slan+/NC-monocytes express higher levels of genes and proteins specific of NC-monocytes than slan-/NC-monocytes do. Unsupervised clustering of scRNA-seq data generated one cluster of NC- and one of INT-monocytes, where all slan+/NC-monocytes were allocated to the NC-monocyte cluster, while slan-/NC-monocytes were found, in part (13.4%), within the INT-monocyte cluster. In addition, total NC- and slan-/NC-monocytes, but not slan+/NC-monocytes, were found by both bulk RNA-seq and scRNA-seq to contain a small percentage of natural killer cells. Conclusion: In addition to comparatively characterize total NC-, slan-/NC- and slan+/NC-monocyte transcriptomes and proteomes, our data prove that slan+/NC-, but not slan-/NC-, monocytes are more representative of prototypical NC-monocytes.


Assuntos
Monócitos , Proteômica , Humanos , Leucócitos Mononucleares
5.
Pediatr Blood Cancer ; 70(12): e30671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37712719

RESUMO

We report a novel case of SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2) mutation successfully treated with hematopoietic stem cell transplantation. The female patient presented delayed cord separation, chronic diarrhea, skin abscesses, skeletal dysmorphisms, and neutropenia with specific granule deficiency. Analysis of the transcriptomic profile of peripheral blood sorted mature and immature SMARCD2 neutrophils showed defective maturation process that associated with altered expression of genes related to specific, azurophilic, and gelatinase granules, such as LTF, CRISP3, PTX3, and CHI3L1. These abnormalities account for the prevalence of immature neutrophils in the peripheral blood, impaired function, and deregulated inflammatory responses.

6.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768547

RESUMO

Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1ß and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.


Assuntos
Monócitos , Tromboplastina , Humanos , Apolipoproteína C-III/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo
7.
Cells ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497044

RESUMO

COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.


Assuntos
Neutrófilos , RNA Viral , SARS-CoV-2 , Receptor 8 Toll-Like , Humanos , COVID-19 , Neutrófilos/metabolismo , SARS-CoV-2/metabolismo , Receptor 8 Toll-Like/genética , RNA Viral/genética
8.
Front Immunol ; 13: 1049079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466913

RESUMO

Background: Psoriasis is a chronic skin disease associated with deregulated interplays between immune cells and keratinocytes. Neutrophil accumulation in the skin is a histological feature that characterizes psoriasis. However, the role of neutrophils in psoriasis onset and development remains poorly understood. Methods: In this study, we utilized the model of psoriasiform dermatitis, caused by the repeated topical application of an imiquimod containing cream, in neutrophil-depleted mice or in mice carrying impairment in neutrophil functions, including p47phox -/- mice (lacking a cytosolic subunit of the phagocyte nicotinamide adenine dinucleotide phosphate - NADPH - oxidase) and Sykfl/fl MRP8-cre+ mice (carrying the specific deletion of the Syk kinase in neutrophils only), to elucidate the specific contribution of neutrophils to psoriasis development. Results: By analyzing disease development/progression in neutrophil-depleted mice, we now report that neutrophils act as negative modulators of disease propagation and exacerbation by inhibiting gammadelta T cell effector functions via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production. We also report that Syk functions as a crucial molecule in determining the outcome of neutrophil and γδ T cell interactions. Accordingly, we uncover that a selective impairment of Syk-dependent signaling in neutrophils is sufficient to reproduce the enhancement of skin inflammation and γδ T cell infiltration observed in neutrophil-depleted mice. Conclusions: Overall, our findings add new insights into the specific contribution of neutrophils to disease progression in the IMQ-induced mouse model of psoriasis, namely as negative regulatory cells.


Assuntos
Eczema , Psoríase , Camundongos , Animais , Imiquimode , Neutrófilos , NADP , Psoríase/induzido quimicamente , Modelos Animais de Doenças , NADPH Oxidases/genética , Progressão da Doença
9.
Nat Immunol ; 23(5): 679-691, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484408

RESUMO

Here we report the identification of human CD66b-CD64dimCD115- neutrophil-committed progenitor cells (NCPs) within the SSCloCD45dimCD34+ and CD34dim/- subsets in the bone marrow. NCPs were either CD45RA+ or CD45RA-, and in vitro experiments showed that CD45RA acquisition was not mandatory for their maturation process. NCPs exclusively generated human CD66b+ neutrophils in both in vitro differentiation and in vivo adoptive transfer experiments. Single-cell RNA-sequencing analysis indicated NCPs fell into four clusters, characterized by different maturation stages and distributed along two differentiation routes. One of the clusters was characterized by an interferon-stimulated gene signature, consistent with the reported expansion of peripheral mature neutrophil subsets that express interferon-stimulated genes in diseased individuals. Finally, comparison of transcriptomic and phenotypic profiles indicated NCPs represented earlier neutrophil precursors than the previously described early neutrophil progenitors (eNePs), proNeus and COVID-19 proNeus. Altogether, our data shed light on the very early phases of neutrophil ontogeny.


Assuntos
Antígenos CD , Medula Óssea , Moléculas de Adesão Celular , Diferenciação Celular , Neutrófilos , Receptor de Fator Estimulador de Colônias de Macrófagos , Receptores de IgG , Células da Medula Óssea , COVID-19 , Proteínas Ligadas por GPI , Humanos , Interferons , Neutrófilos/citologia
10.
Cell Rep ; 35(7): 109143, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010659

RESUMO

The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBPß, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8). Interestingly, differentially acetylated and LDTF-marked regions reveal an over-representation of OCT-binding motifs that are selectively bound by OCT2/POU2F2. Analysis of OCT2 genomic distribution in primary neutrophils and of OCT2-depletion in HL-60-differentiated neutrophils proves the requirement for OCT2 in contributing to promote, along with nuclear factor κB (NF-κB) and activator protein 1 (AP-1), the TLR8-induced gene expression program in neutrophils. Altogether, our data demonstrate that neutrophils, upon activation via TLR8, profoundly reprogram their chromatin status, ultimately displaying cell-specific, prolonged transcriptome changes. Data also show an unexpected role for OCT2 in amplifying the transcriptional response to TLR8-mediated activation.


Assuntos
Perfilação da Expressão Gênica/métodos , Ativação de Neutrófilo/genética , Transportador 2 de Cátion Orgânico/metabolismo , Receptor 8 Toll-Like/metabolismo , Humanos
11.
J Leukoc Biol ; 108(5): 1515-1526, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32480433

RESUMO

The IL-12 family of cytokines plays crucial functions in innate and adaptive immunity. These cytokines include heterodimers sharing distinct α (IL-12A, IL-23A, and IL-27A) with two ß (IL-12B and Epstein-Barr virus induced gene 3 [EBI3]) chains, respectively, IL-12 (IL-12B plus IL-12A) and IL-23 (IL-12B plus IL-23A) sharing IL-12B, IL-27 (EBI3 plus IL-27A), IL-35 (EBI3 plus IL-12A), and IL-39 (EBI3 plus IL-23A) sharing EBI3. In this context, we have recently reported that highly pure neutrophils incubated with TLR8 agonists produce functional IL-23. Previously, we showed that neutrophils incubated with LPS plus IFNγ for 20 h produce IL-12. Herein, we investigated whether highly pure, TLR8-activated, neutrophils produce EBI3, and in turn IL-27, IL-35, and IL-39, the IL-12 members containing it. We report that neutrophils incubated with TLR8 ligands, TNFα and, to a lesser extent, LPS, produce and release remarkable amounts of EBI3, but not IL-27A, consequently excluding the possibility for an IL-27 production. We also report a series of unsuccessful experiments performed to investigate whether neutrophil-derived EBI3 associates with IL-23A to form IL-39. Furthermore, we show that neutrophils incubated with IFNγ in combination with either TLR8 or TLR4 ligands express/produce neither IL-12, nor IL-35, due to the inability of IFNγ, contrary to previous findings, to activate IL12A transcription. Even IL-27 was undetectable in supernatants harvested from IFNγ plus R848-treated neutrophils, although they were found to accumulate IL27A transcripts. Finally, by immunohistochemistry experiments, EBI3-positive neutrophils were found in discrete pathologies only, including diverticulitis, cholecystitis, Gorham disease, and Bartonella Henselae infection, implying a specific role of neutrophil-derived EBI3 in vivo.


Assuntos
Imidazóis/farmacologia , Neutrófilos/imunologia , Receptor 8 Toll-Like/agonistas , Animais , Humanos , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucinas/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor/imunologia , Neutrófilos/patologia , Receptor 8 Toll-Like/imunologia
12.
FASEB J ; 34(7): 9269-9284, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413173

RESUMO

Monocytic cells perform crucial homeostatic and defensive functions. However, their fate and characterization at the transcriptomic level in human tissues are partially understood, often as a consequence of the lack of specific markers allowing their unequivocal identification. The 6-sulfo LacNAc (slan) antigen identifies a subset of non-classical (NC) monocytes in the bloodstream, namely the slan+ -monocytes. In recent studies, we and other groups have reported that, in tonsils, slan marks dendritic cell (DC)-like cells, as defined by morphological, phenotypical, and functional criteria. However, subsequent investigations in lymphomas have uncovered a significant heterogeneity of tumor-infiltrating slan+ -cells, including a macrophage-like state. Based on their emerging role in tissue inflammation and cancer, herein we investigated slan+ -cell fate in tonsils by using a molecular-based approach. Hence, RNA from tonsil slan+ -cells, conventional CD1c+ DCs (cDC2) and CD11b+ CD14+ -macrophages was subjected to gene expression analysis. For comparison, transcriptomes were also obtained from blood cDC2, classical (CL), intermediate (INT), NC, and slan+ -monocytes. Data demonstrate that the main trajectory of human slan+ -monocytes infiltrating the tonsil tissue is toward a macrophage-like population, displaying molecular features distinct from those of tonsil CD11b+ CD14+ -macrophages and cDC2. These findings provide a novel view on the terminal differentiation path of slan+ -monocytes, which is relevant for inflammatory diseases and lymphomas.


Assuntos
Amino Açúcares/metabolismo , Células Dendríticas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Tonsila Palatina/metabolismo , Tonsilite/genética , Estudos de Casos e Controles , Células Cultivadas , Células Dendríticas/citologia , Perfilação da Expressão Gênica , Humanos , Macrófagos/citologia , Monócitos/citologia , Tonsila Palatina/citologia , Tonsilite/metabolismo , Tonsilite/patologia
13.
J Leukoc Biol ; 105(6): 1155-1165, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30817049

RESUMO

Human neutrophils contribute to the regulation of inflammation via the generation of a range of cytokines that affect all elements of the immune system. Here, we investigated their ability to express some of the members of the IL-12 family after incubation with TLR8 agonists. Highly pure human neutrophils were thus incubated for up to 48 h with or without R848, or other TLR8 agonists, to then measure the expression levels of transcripts and proteins for IL-12 family member subunits by RNA-seq, reverse transcription quantitative PCR, and ELISA. We show a TLR8-mediated inducible expression of IL-12B and IL-23A, but not IL-12A, mRNA, which occurs via chromatin remodeling (as assessed by ChIP-seq), and subsequent production of IL-23 and IL-12B, but no IL-12, proteins. Induction of IL-23 requires endogenous TNF-α, as both mRNA and protein levels were blocked in TLR8-activated neutrophils via a TNF-α-neutralizing Ab. We also show that supernatants from TLR8-activated neutrophils, but not autologous monocytes, induce the differentiation of Th17 cells from naïve T cells in an IL-23-dependent fashion. This study unequivocally demonstrates that highly pure human neutrophils express and produce IL-23, further supporting the key roles played by these cells in the important IL-17/IL-23 network and Th17 responses.


Assuntos
Subunidade p40 da Interleucina-12/imunologia , Subunidade p19 da Interleucina-23/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Receptor 8 Toll-Like/imunologia , Humanos , Monócitos/citologia , Monócitos/imunologia , Neutrófilos/citologia , Células Th17/imunologia , Receptor 8 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/imunologia
14.
Br J Cancer ; 119(8): 994-1008, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318520

RESUMO

BACKGROUND: The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS: A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS: We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS: The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Proteínas de Choque Térmico/biossíntese , Neoplasias/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Desacopladora 2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Front Immunol ; 9: 795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719541

RESUMO

Neutrophils are known to perform a series of effector functions that are crucial for the innate and adaptive responses, including the synthesis and secretion of a variety of cytokines. In light of the controversial data in the literature, the main objective of this study was to more in-depth reevaluate the capacity of human neutrophils to express and produce cytokines of the IL-17 family in vitro. By reverse transcription quantitative real-time PCR, protein measurement via commercial ELISA, immunohistochemistry (IHC) and immunofluorescence (IF), flow cytometry, immunoblotting, chromatin immunoprecipitation (ChIP), and ChIP-seq experiments, we found that highly pure (>99.7%) populations of human neutrophils do not express/produce IL-17A, IL-17F, IL-17AF, or IL-17B mRNA/protein upon incubation with a variety of agonists. Similar findings were observed by analyzing neutrophils isolated from active psoriatic patients. In contrast with published studies, IL-17A and IL-17F mRNA expression/production was not even found when neutrophils were incubated with extremely high concentrations of IL-6 plus IL-23, regardless of their combination with inactivated hyphae or conidia from Aspergillus fumigatus. Consistently, no deposition of histone marks for active (H3K27Ac) and poised (H3K4me1) genomic regulatory elements was detected at the IL-17A and IL-17F locus of resting and IL-6 plus IL-23-stimulated neutrophils, indicating a closed chromatin conformation. Concurrent experiments revealed that some commercial anti-IL-17A and anti-IL-17B antibodies (Abs), although staining neutrophils either spotted on cytospin slides or present in inflamed tissue samples by IHC/IF, do not recognize intracellular protein having the molecular weight corresponding to IL-17A or IL-17B, respectively, in immunoblotting experiments of whole neutrophil lysates. By contrast, the same Abs were found to more specifically recognize other intracellular proteins of neutrophils, suggesting that their ability to positively stain neutrophils in cytospin preparations and, eventually, tissue samples derives from IL-17A- or IL-17B-independent detections. In sum, our data confirm and extend, also at epigenetic level, previous findings on the inability of highly purified populations of human neutrophils to express/produce IL-17A, IL-17B, and IL-17F mRNAs/proteins in vitro, at least under the experimental conditions herein tested. Data also provide a number of justifications explaining, in part, why it is possible to false positively detect IL-17A+-neutrophils.


Assuntos
Interleucina-17/biossíntese , Neutrófilos/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Neutrófilos/imunologia
16.
Eur J Clin Invest ; 48 Suppl 2: e12952, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29772063

RESUMO

Polymorphonuclear neutrophils are the most numerous leucocytes present in human blood, and function as crucial players in innate immune responses. Neutrophils are indispensable for the defence towards microbes, as they effectively counter them by releasing toxic enzymes, by synthetizing reactive oxygen species and by producing inflammatory mediators. Interestingly, recent findings have highlighted an important role of neutrophils also as promoters of the resolution of inflammation process, indicating that their biological functions go well beyond simple pathogen killing. Consistently, data from the last decades have highlighted that neutrophils may even contribute to the development of adaptive immunity by performing previously unanticipated functions, including the capacity to extend their survival, directly interact with other leucocytes or cell types, and produce and release a variety of cytokines. In this article, we will summarize the main features of, as well as emphasize some important concepts on, the production of cytokines by human neutrophils.


Assuntos
Citocinas/biossíntese , Neutrófilos/metabolismo , Sobrevivência Celular , Humanos , Interleucina-17/metabolismo , Neutrófilos/fisiologia , Biossíntese de Proteínas/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-28553619

RESUMO

CCL23, also known as myeloid progenitor inhibitory factor (MPIF)-1, macrophage inflammatory protein (MIP)-3, or CKß8, is a member of the CC chemokine subfamily exerting its effects via CCR1 binding. By doing so, CCL23 selectively recruits resting T lymphocytes and monocytes, inhibits proliferation of myeloid progenitor cells and promotes angiogenesis. Previously, we and other groups have reported that human neutrophils are able to produce chemokines upon appropriate activation, including CCR1-binding CCL2, CCL3, and CCL4. Herein, we demonstrate that human neutrophils display the capacity to also express and release CCL23 when stimulated by R848 and, to a lesser extent, by other pro-inflammatory agonists, including LPS, Pam3CSK4, and TNFα. Notably, we show that, on a per cell basis, R848-activated neutrophils produce higher levels of CCL23 than autologous CD14+-monocytes activated under similar experimental conditions. By contrast, we found that, unlike CD14+-monocytes, neutrophils do not produce CCL23 in response to IL-4, thus indicating that they express CCL23 in a stimulus-specific fashion. Finally, we show that the production of CCL23 by R848-stimulated neutrophils is negatively modulated by IFNα, which instead enhances that of CCL2. Together, data extend our knowledge on the chemokines potentially produced by neutrophils. The ability of human neutrophils to produce CCL23 further supports the notion on the neutrophil capacity of orchestrating the recruitment of different cell types to the inflamed sites, in turn contributing to the control of the immune response.


Assuntos
Quimiocinas CC/biossíntese , Imidazóis/farmacologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Humanos , Interleucina-4/metabolismo , Cinética , Lipopeptídeos/metabolismo , Lipopolissacarídeos/metabolismo , Neutrófilos/efeitos dos fármacos , RNA Mensageiro/biossíntese , Receptores CCR1 , Transdução de Sinais/imunologia , Receptores Toll-Like/agonistas
18.
J Allergy Clin Immunol ; 140(2): 553-564.e4, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28069426

RESUMO

BACKGROUND: Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. OBJECTIVE: We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. METHODS: Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. RESULTS: Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. CONCLUSION: These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities.


Assuntos
Candidíase Mucocutânea Crônica/genética , Células Matadoras Naturais/imunologia , Fator de Transcrição STAT1/genética , Adolescente , Adulto , Candidíase Mucocutânea Crônica/imunologia , Criança , Citocinas/farmacologia , Feminino , Expressão Gênica , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT5/metabolismo
20.
J Allergy Clin Immunol ; 138(1): 229-240.e3, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26875746

RESUMO

BACKGROUND: Partial DiGeorge syndrome (pDGS) is caused by deletion of the 22q11.2 region. Within this region lies CrK-like (CRKL), a gene encoding an adapter protein belonging to the Crk family that is involved in the signaling cascade of IL-2, stromal cell-derived factor 1α, and type I interferon. Although recurrent infections can be observed in patients with deletion of chromosome 22 syndrome, the immune pathogenesis of this condition is yet not fully understood. OBJECTIVE: We aimed to investigate the role of CRKL in T-cell functional responses in patients affected with pDGS. METHODS: Protein expression levels and phosphorylation of CRKL were evaluated in patients with pDGS. T-cell functional assays in vitro and gene-silencing experiments were also performed. RESULTS: CRKL protein expression, as well as its phosphorylation, were reduced in all patients with pDGS, especially on IL-2 stimulation. Moreover, T cells presented impaired proliferation and reduced IL-2 production on anti-CD3/CD28 stimulation and decreased c-Fos expression. Finally, CRKL silencing in Jurkat T cells resulted in impaired T-cell proliferation and reduced c-Fos expression. CONCLUSIONS: The impaired T-cell proliferation and reduction of CRKL, phosphorylated CRKL, and c-Fos levels suggest a possible role of CRKL in functional deficiencies of T cells in patients with pDGS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Síndrome de DiGeorge/etiologia , Síndrome de DiGeorge/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Biomarcadores , Estudos de Casos e Controles , Linhagem Celular , Criança , Pré-Escolar , Citocinas/biossíntese , Síndrome de DiGeorge/diagnóstico , Inativação Gênica , Humanos , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Lactente , Ativação Linfocitária , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Interferência de RNA , Fator de Transcrição STAT5/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...