Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 839: 156302, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640760

RESUMO

Improving food systems to address food insecurity and minimize environmental impacts is still a challenge in the 21st century. Ecohydrological models are a key tool for accurate system representation and impact measurement. We used a multi-phase testing approach to represent baseline hydrologic conditions across three agricultural basins that drain parts of north central and central Iowa, U.S.: the Des Moines River Basin (DMRB), the South Skunk River Basin (SSRB), and the North Skunk River Basin (NSRB). The Soil and Water Assessment Tool (SWAT) ecohydrological model was applied using a framework consisting of the Hydrologic and Water Quality System (HAWQS) online platform, 40 streamflow gauges, the alternative runoff curve number method, additional tile drainage and fertilizer application. In addition, ten SWAT baselines were created to analyze both the HAWQS parameters (baseline 1) and nine alternative baseline configurations (considering the framework). Most of the models achieved acceptable statistical replication of measured (close to the outlet) streamflows, with Nash-Sutcliffe (NS) values ranging up to 0.80 for baseline 9 in the DMRB and SSRB, and 0.78 for baseline 7 in the NSRB. However, water balance and other hydrologic indicators revealed that careful selection of management data and other inputs are essential for obtaining the most accurate representation of baseline conditions for the simulated stream systems. Using cumulative distribution curves as a criterion, baselines 7 to 10 showed the best fit for the SSRB and NSRB, but none of the baselines accurately represented 20% of low flows for the DMRB. Analysis of snowmelt and growing season periods showed that baselines 3 and 4 resulted in poor simulations across all three basins using four common statistical measures (NS, KGE, Pbias, and R2), and that baseline 9 was characterized by the most satisfactory statistical results, followed by baselines 5, 7 and 1.


Assuntos
Solo , Qualidade da Água , Hidrologia , Iowa , Modelos Teóricos
2.
Sci Total Environ ; 795: 148915, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328938

RESUMO

Alternative climate products, such as gauge-based gridded data, ground-based weather radar, satellite precipitation and climate reanalysis products, are being increasingly applied for hydrological modelling. This review aims to summarize the studies that have evaluated alternative climate products within Soil and Water Assessment Tool (SWAT) applications and to propose future research directions, primarily for modelers who wish to study limited gauge, ungauged or transnational river basins. A total of 126 articles have been identified since 2004, the majority of which have been published within the last five years. About 58% of the studies were conducted in Asia, mostly in China and India, while another 14% were reported for United States studies. CFSR and TRMM are the most popular applied products in SWAT modelling, followed by PERSIANN, CMADS, APHRODITE, CHIRPS and NEXRAD. Generally, the performance of climate products is region-dependent; e.g., CFSR typically performs well in the United States and South America, but performs more poorly for Asia, Africa and mountainous basin conditions, as compared to other products. In contrast, the CMADS, TRMM, APRHODITE and NEXRAD have shown the strongest capability for supporting SWAT modelling in these regions. However, most of the evaluated products contain only precipitation input; therefore, merging reliable precipitation with CFSR-temperature is recommended for hydro-climatic modelling. Future research directions include: (1) examination of optimal combinations; e.g. CHIRPS-precipitation and CFSR-temperature, for simulating streamflow in different types of river basins; (2) development of a standardized validation scheme which incorporates the commonly accepted products, statistical approaches and temperature variables; (3) further evaluation of existing climate data products to accurately capture extreme events, pattern and indices as well as WGEN statistics; (4) improvement of climate data in terms of averaging approach, bias correction and additional factors or indices integration; and (5) bias correction of CMIP6 climate projections using the optimal climate data combinations.


Assuntos
Solo , Água , Hidrologia , Modelos Teóricos , Rios
4.
Sci Total Environ ; 720: 137562, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325579

RESUMO

This study reports the application of Soil and Water Assessment Tool (SWAT) within the Hydrologic and Water Quality System (HAWQS) on-line platform, for the Upper Mississippi River Basin (UMRB). The UMRB is an important ecosystem located in the north central U.S. that is experiencing a range of ecological stresses. Specifically, testing of SWAT was performed for: (1) Hargreaves (HG) and Penman-Monteith (PM) PET methods, and (2) Livneh, National Climatic Data Center (NCDC) and Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate datasets. The Livneh-PM combination resulted in the highest average annual water yield of 380.6 mm versus the lowest estimated water yield of 193.9 mm for the Livneh-HG combination, in response to 23-year uncalibrated simulations. Higher annual ET and PET values were predicted with HG method versus the PM method for all three weather datasets in response to the uncalibrated simulations, due primarily to higher HG-based estimates during the growing season. Based on these results, it was found that the HG method is the preferred PET option for the UMRB. Initial calibration of SWAT was performed using the Livneh data and HG method for three Mississippi River main stem gauge sites, which was followed by spatial validation at 10 other gauge sites located within the UMRB stream network. Overall satisfactory results were found for the calibration and validation gauge sites, with the majority of R2 values ranging between 0.61 and 0.82, Nash-Sutcliffe modeling efficiency (NSE) values ranging between 0.50 and 0.79, and Kling-Gupta efficiency (KGE) values ranging between 0.61 and 0.84. The results of an additional experimental suite of six scenarios, which represented different combinations of climate data sets and calibrated parameters, revealed that suggested statistical criteria were again satisfied by the different scenario combinations. Overall, the PRISM data exhibited the strongest reliability for the UMRB.

5.
Sci Total Environ ; 657: 297-309, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30543979

RESUMO

The Des Moines Lobe (DML) of north-central Iowa has been artificially drained by subsurface drains and surface ditches to provide some of the most productive agricultural land in the world. Herein we report on the use of end-member mixing analysis (EMMA) models and the numerical model Soil and Water Assessment Tool (SWAT) to quantify the contribution of tile drainage to basin-scale water yields at various scales within the 2370 km2 Boone River watershed (BRW), a subbasin within the Des Moines River watershed. EMMA and SWAT methods suggested that tile drainage provided approximately 46 to 54% of annual discharge in the Boone River and during the March to June period, accounted for a majority of flow in the river. In the BRW subbasin of Lyons Creek, approximately 66% of the annual flow was sourced from tile drainage. Within the DML region, tile drainage contributes to basin-scale water yields at scales ranging from 40 to 16,000 km2, with downstream effects diminishing with increasing watershed size. Developing a better understanding of water sources contributing to river discharge is needed if mitigation and control strategies are going to be successfully targeted to reduce downstream nutrient export.

6.
Sci Total Environ ; 607-608: 1188-1200, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28732398

RESUMO

About 50% of U.S. water pollution problems are caused by non-point source (NPS) pollution, primarily sediment and nutrients from agricultural areas, despite the widespread implementation of agricultural Best Management Practices (BMPs). However, the effectiveness of implementation strategies and type of BMPs at watershed scale are still not well understood. In this study, the Soil and Water Assessment Tool (SWAT) ecohydrological model was used to assess the effectiveness of pollutant mitigation strategies in the Raccoon River watershed (RRW) in west-central Iowa, USA. We analyzed fourteen management scenarios based on systematic combinations of five strategies: fertilizer/manure management, changing row-crop land to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems, specifically aimed at reducing nitrate and total suspended sediment yields from hotspot areas in the RRW. Moreover, we assessed implications of climate change on management practices, and the impacts of management practices on water availability, row crop yield, and total agricultural production. Our results indicate that sufficient reduction of nitrate load may require either implementation of multiple management practices (38.5% with current setup) or conversion of extensive areas into perennial grass (up to 49.7%) to meet and maintain the drinking water standard. However, climate change may undermine the effectiveness of management practices, especially late in the 21st century, cutting the reduction by up to 65% for nitrate and more for sediment loads. Further, though our approach is targeted, it resulted in a slight decrease (~5%) in watershed average crop yield and hence an overall reduction in total crop production, mainly due to the conversion of row-crop lands to perennial grass. Such yield reductions could be quite spatially heterogeneously distributed (0 to 40%).


Assuntos
Agricultura , Mudança Climática , Sedimentos Geológicos/química , Nitratos/análise , Poluição da Água/prevenção & controle , Iowa , Modelos Teóricos , Rios
7.
Environ Manage ; 57(4): 894-911, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26616430

RESUMO

Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Rios/química , Solo/química , Qualidade da Água , Agricultura , Calibragem , Mudança Climática , Hidrologia , Illinois , Iowa , Modelos Teóricos , Nitratos/análise , Água/química , Movimentos da Água
8.
Proc Natl Acad Sci U S A ; 111(52): 18530-5, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512489

RESUMO

A seasonally occurring summer hypoxic (low oxygen) zone in the northern Gulf of Mexico is the second largest in the world. Reductions in nutrients from agricultural cropland in its watershed are needed to reduce the hypoxic zone size to the national policy goal of 5,000 km(2) (as a 5-y running average) set by the national Gulf of Mexico Task Force's Action Plan. We develop an integrated assessment model linking the water quality effects of cropland conservation investment decisions on the more than 550 agricultural subwatersheds that deliver nutrients into the Gulf with a hypoxic zone model. We use this integrated assessment model to identify the most cost-effective subwatersheds to target for cropland conservation investments. We consider targeting of the location (which subwatersheds to treat) and the extent of conservation investment to undertake (how much cropland within a subwatershed to treat). We use process models to simulate the dynamics of the effects of cropland conservation investments on nutrient delivery to the Gulf and use an evolutionary algorithm to solve the optimization problem. Model results suggest that by targeting cropland conservation investments to the most cost-effective location and extent of coverage, the Action Plan goal of 5,000 km(2) can be achieved at a cost of $2.7 billion annually. A large set of cost-hypoxia tradeoffs is developed, ranging from the baseline to the nontargeted adoption of the most aggressive cropland conservation investments in all subwatersheds (estimated to reduce the hypoxic zone to less than 3,000 km(2) at a cost of $5.6 billion annually).

9.
J Environ Qual ; 43(1): 1-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602534

RESUMO

The Soil and Water Assessment Tool (SWAT) model has emerged as one of the most widely used water quality watershed- and river basin-scale models worldwide, applied extensively for a broad range of hydrologic and/or environmental problems. The international use of SWAT can be attributed to its flexibility in addressing water resource problems, extensive networking via dozens of training workshops and the several international conferences that have been held during the past decade, comprehensive online documentation and supporting software, and an open source code that can be adapted by model users for specific application needs. The catalyst for this special collection of papers was the 2011 International SWAT Conference & Workshops held in Toledo, Spain, which featured over 160 scientific presentations representing SWAT applications in 37 countries. This special collection presents 22 specific SWAT-related studies, most of which were presented at the 2011 SWAT Conference; it represents SWAT applications on five different continents, with the majority of studies being conducted in Europe and North America. The papers cover a variety of topics, including hydrologic testing at a wide range of watershed scales, transport of pollutants in northern European lowland watersheds, data input and routing method effects on sediment transport, development and testing of potential new model algorithms, and description and testing of supporting software. In this introduction to the special section, we provide a synthesis of these studies within four main categories: (i) hydrologic foundations, (ii) sediment transport and routing analyses, (iii) nutrient and pesticide transport, and (iv) scenario analyses. We conclude with a brief summary of key SWAT research and development needs.

10.
Ecol Appl ; 21(4): 1068-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21774414

RESUMO

While biofuels may yield renewable fuel benefits, there could be downsides in terms of water quality and other environmental stressors, particularly if corn is relied upon exclusively as the feedstock. The consequences of increased corn production will depend importantly on where (and how) the additional corn is grown, which, in turn, depends on the characteristics of land and its associated profitability. Previous work has relied on rules of thumb for allocating land to increased acreage based on historical land use or other heuristics. Here, we advance our understanding of these phenomena by describing a modeling system that links an economics-driven land use model with a watershed-based water quality model for the Upper Mississippi River Basin (UMRB). This modeling system is used to assess the water quality changes due to increased corn acreage, which is associated with higher relative corn prices. We focus on six scenarios based on six realistic pairs of corn and soybean prices which correspond to a scale of decreasing soybean to corn price ratio. These price-driven land use changes provide estimates of the water quality effects that current biofuel policies may have in the UMRB. Our analysis can help evaluate the costs and environmental consequences associated with implementation strategies for the biofuel mandates of the new energy bill. The amounts of total N and P delivered to the outlet of the UMRB (located at Grafton, Illinois, USA) rise as corn production becomes more intensive in the region. Our results indicate that a 14.4% in corn acreage in the watershed due to corn intensification in the most economically profitable locations would result in a 5.4% increase in total nitrogen loads and in a 4.1% increase in total phosphorus loads at Grafton. Our most aggressive scenario, driven by high but not out of reach crop prices, results in about a 57% increase in corn acreage with a corresponding 18.5% increase in N and 12% increase in P. These are somewhat conservative increases in nutrients, compared to those of previous studies, likely due to our focus on cultivated cropland which is already heavily fertilized.


Assuntos
Agricultura/tendências , Abastecimento de Água/normas , Zea mays , Agricultura/economia , Biocombustíveis , Conservação dos Recursos Naturais , Etanol , Modelos Econômicos , Fatores de Tempo , Estados Unidos
11.
Ecol Appl ; 20(6): 1542-55, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20945758

RESUMO

In 2008, the hypoxic zone in the Gulf of Mexico, measuring 20 720 km2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This study combines the tools of evolutionary computation with a water quality model and cost data to develop a trade-off frontier for the Upper Mississippi River Basin specifying the least cost of achieving nutrient reductions and the location of the agricultural conservation practices needed. The frontier allows policymakers and stakeholders to explicitly see the trade-offs between cost and nutrient reductions. For example, the cost of reducing annual nitrate-N loadings by 30% is estimated to be US$1.4 billion/year, with a concomitant 36% reduction in P and the cost of reducing annual P loadings by 30% is estimated to be US$370 million/year, with a concomitant 9% reduction in nitrate-N.


Assuntos
Agricultura , Conservação dos Recursos Naturais/métodos , Oxigênio/química , Poluentes Químicos da Água/química , Poluição Química da Água/economia , Poluição Química da Água/prevenção & controle , Algoritmos , Simulação por Computador , Ecossistema , Modelos Teóricos , Oceanos e Mares , Rios , Água do Mar/química , Movimentos da Água
12.
J Environ Qual ; 39(4): 1317-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20830920

RESUMO

The state of Iowa requires developing total maximum daily loads (TMDLs) for over 400 water bodies that are listed on the 303(d) list of the impaired waters. The Raccoon River watershed, which covers approximately 9400 km2 of prime agriculture land and represents a typical Midwestern corn-belt region in west-central Iowa, was found to have three stream segments impaired by nitrate-N. The Soil and Water Assessment Tool (SWAT) was applied to this watershed to facilitate the development of a TMDL. The modeling framework integrates SWAT with supporting software and databases on topography, land use and management, soil, and weather information. Annual and monthly simulated and measured streamflow and nitrate loads were strongly correlated. The watershed response was evaluated for a suite of watershed management scenarios where land use and management changes were made uniformly across the watershed. A scenario of changing the entire land to row crop resulted in an increased nitrate load of about 12% over the baseline condition at the watershed outlet. Results from the 15 nitrate load reduction strategies were found to reduce nitrate from < 1% to about 85%, with the greatest potential reduction associated with changing the row crops to grassland. This research demonstrated the use of a modeling system to facilitate the analyses of TMDL implementation strategies, including the ability to target the most efficient allocation of alternative practices on a subwatershed basis.


Assuntos
Nitratos/química , Rios/química , Poluentes Químicos da Água/química , Agricultura , Iowa , Modelos Teóricos , Solo , Fatores de Tempo , Movimentos da Água
13.
Environ Manage ; 44(4): 732-44, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19707705

RESUMO

Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.


Assuntos
Agricultura/economia , Conservação dos Recursos Naturais , Etanol , Custos e Análise de Custo , Iowa , Zea mays/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...