Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13630, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211050

RESUMO

Metastatic progression defines the final stages of tumor evolution and underlies the majority of cancer-related deaths. The heterogeneity in disseminated tumor cell populations capable of seeding and growing in distant organ sites contributes to the development of treatment resistant disease. We recently reported the identification of a novel tumor-derived cell population, circulating hybrid cells (CHCs), harboring attributes from both macrophages and neoplastic cells, including functional characteristics important to metastatic spread. These disseminated hybrids outnumber conventionally defined circulating tumor cells (CTCs) in cancer patients. It is unknown if CHCs represent a generalized cancer mechanism for cell dissemination, or if this population is relevant to the metastatic cascade. Herein, we detect CHCs in the peripheral blood of patients with cancer in myriad disease sites encompassing epithelial and non-epithelial malignancies. Further, we demonstrate that in vivo-derived hybrid cells harbor tumor-initiating capacity in murine cancer models and that CHCs from human breast cancer patients express stem cell antigens, features consistent with the potential to seed and grow at metastatic sites. Finally, we reveal heterogeneity of CHC phenotypes reflect key tumor features, including oncogenic mutations and functional protein expression. Importantly, this novel population of disseminated neoplastic cells opens a new area in cancer biology and renewed opportunity for battling metastatic disease.


Assuntos
Células Híbridas/patologia , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Neoplasias/sangue
2.
Sci Adv ; 4(9): eaat7828, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30214939

RESUMO

High lethality rates associated with metastatic cancer highlight an urgent medical need for improved understanding of biologic mechanisms driving metastatic spread and identification of biomarkers predicting late-stage progression. Numerous neoplastic cell intrinsic and extrinsic mechanisms fuel tumor progression; however, mechanisms driving heterogeneity of neoplastic cells in solid tumors remain obscure. Increased mutational rates of neoplastic cells in stressed environments are implicated but cannot explain all aspects of tumor heterogeneity. We present evidence that fusion of neoplastic cells with leukocytes (for example, macrophages) contributes to tumor heterogeneity, resulting in cells exhibiting increased metastatic behavior. Fusion hybrids (cells harboring hematopoietic and epithelial properties) are readily detectible in cell culture and tumor-bearing mice. Further, hybrids enumerated in peripheral blood of human cancer patients correlate with disease stage and predict overall survival. This unique population of neoplastic cells provides a novel biomarker for tumor staging, as well as a potential therapeutic target for intervention.


Assuntos
Carcinoma Ductal Pancreático/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/patologia , Animais , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/mortalidade , Fusão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Epiteliais/patologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Híbridas , Cariotipagem , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/mortalidade , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Dev Cell ; 43(5): 549-562.e6, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207258

RESUMO

Interactions between tumor cells and tumor-associated macrophages play critical roles in the initiation of tumor cell motility. To capture the cellular interactions of the tumor microenvironment with high-resolution imaging, we directly visualized tumor cells and their interactions with macrophages in zebrafish. Live imaging in zebrafish revealed that macrophages are dynamic, yet maintain sustained contact with tumor cells. In addition, the recruitment of macrophages to tumor cells promotes tumor cell dissemination. Using a Cre/LoxP strategy, we found that macrophages transfer cytoplasm to tumor cells in zebrafish and mouse models. Remarkably, macrophage cytoplasmic transfer correlated with melanoma cell dissemination. We further found that macrophages transfer cytoplasm to tumor cells upon cell contact in vitro. Thus, we present a model in which macrophage/tumor cell contact allows for the transfer of cytoplasmic molecules from macrophages to tumor cells corresponding to increased tumor cell motility and dissemination.


Assuntos
Comunicação Celular/fisiologia , Macrófagos/patologia , Melanoma/patologia , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Citoplasma/metabolismo , Camundongos , Invasividade Neoplásica , Peixe-Zebra
4.
J Vis Exp ; (125)2017 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-28784976

RESUMO

A rate-limiting aspect of transgenic mouse models of mammary adenocarcinoma is that primary tumor burden in mammary tissue typically defines study end-points. Thus, studies focused on elucidating mechanisms of late-stage de novo metastasis are compromised, as are studies examining efficacy of anti-cancer therapies targeting mediators of metastasis in the adjuvant setting. Numerous murine mammary cancer models have been developed via targeted expression of dominant oncoproteins to mammary epithelial cells yielding models variably mimicking histopathologic and transcriptome-defined breast cancer subtypes common in women1. While much has been learned regarding the biology of mammary carcinogenesis with these models, their utility in identifying molecules regulating growth of late-stage metastasis are compromised as mice are typically euthanized at earlier time points due to significant primary tumor burden. Moreover, since a significant percentage of women diagnosed with breast cancer receive adjuvant therapy after surgical resection of primary tumors and prior to presence of detectable metastatic disease, preclinical models of de novo metastasis are urgently needed as platforms to evaluate new therapies aimed at targeting metastatic foci. To address these deficiencies, we developed a murine model of de novo mammary cancer metastasis, wherein primary mammary tumors are surgically resected, and metastatic foci subsequently develop over a 115 day post-surgical period. This long latency provides a tractable model to identify functionally significant regulators of metastatic progression in mice lacking primary tumor, as well as a model to evaluate preclinical therapeutic efficacy of agents aimed at blocking functionally significant molecules aiding metastatic tumor survival and growth.


Assuntos
Neoplasias Mamárias Experimentais/patologia , Procedimentos Cirúrgicos Operatórios/métodos , Animais , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Metástase Linfática , Neoplasias Mamárias Experimentais/cirurgia , Camundongos , Camundongos Transgênicos , Recidiva Local de Neoplasia , Receptores Virais/genética , Gravação em Vídeo
5.
Cell Mol Gastroenterol Hepatol ; 3(2): 163-173, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275683

RESUMO

In patients with colorectal cancer (CRC) that metastasizes to the liver, there are several key goals for improving outcomes including early detection, effective prognostic indicators of treatment response, and accurate identification of patients at high risk for recurrence. Although new therapeutic regimens developed over the past decade have increased survival, there is substantial room for improvement in selecting targeted treatment regimens for the patients who will derive the most benefit. Recently, there have been exciting developments in identifying high-risk patient cohorts, refinements in the understanding of systemic vs localized drug delivery to metastatic niches, liquid biomarker development, and dramatic advances in tumor immune therapy, all of which promise new and innovative approaches to tackling the problem of detecting and treating the metastatic spread of CRC to the liver. Our multidisciplinary group held a state-of-the-science symposium this past year to review advances in this rapidly evolving field. Herein, we present a discussion around the issues facing treatment of patients with CRC liver metastases, including the relationship of discrete gene signatures with prognosis. We also discuss the latest advances to maximize regional and systemic therapies aimed at decreasing intrahepatic recurrence, review recent insights into the tumor microenvironment, and summarize advances in noninvasive multimodal biomarkers for early detection of primary and recurrent disease. As we continue to advance clinically and technologically in the field of colorectal tumor biology, our goal should be continued refinement of predictive and prognostic studies to decrease recurrence after curative resection and minimize treatment toxicity to patients through a tailored multidisciplinary approach to cancer care.

6.
J Antimicrob Chemother ; 70(5): 1396-407, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25630649

RESUMO

OBJECTIVES: Cryptococcus gattii from the North American Northwest (NW) have higher azole MICs than do non-NW C. gattii or Cryptococcus neoformans. Since mechanisms of azole resistance in C. gattii are not known, we identified C. gattii and C. neoformans plasma membrane azole efflux pumps and characterized their properties. METHODS: The C. gattii R265 genome was searched for orthologues of known fungal azole efflux genes, expression of candidate genes was assessed by RT-PCR and the expressed genes' cDNAs were cloned and expressed in Saccharomyces cerevisiae. Azole MICs and intracellular [(3)H]fluconazole were measured in C. gattii and C. neoformans and in S. cerevisiae expressing each cDNA of interest, as was [(3)H]fluconazole uptake by post-Golgi vesicles (PGVs) isolated from S. cerevisiae sec6-4 mutants expressing each cDNA of interest. RESULTS: Intracellular [(3)H]fluconazole concentrations were inversely correlated with fluconazole MICs only in 25 NW C. gattii strains. S. cerevisiae expressing three C. gattii cDNAs (encoded by orthologues of C. neoformans AFR1 and MDR1 and the previously unstudied gene AFR2) and their C. neoformans counterparts had higher azole MICs and lower intracellular [(3)H]fluconazole concentrations than did empty-vector controls. PGVs from S. cerevisiae expressing all six Cryptococcus cDNAs also accumulated more [(3)H]fluconazole than did controls, and [(3)H]fluconazole transport by all six transporters of interest was ATP dependent and was inhibited by excess unlabelled fluconazole, voriconazole, itraconazole and posaconazole. CONCLUSIONS: We conclude that C. gattii and C. neoformans AFR1, MDR1 and AFR2 encode ABC transporters that pump multiple azoles out of S. cerevisiae cells, thereby causing azole resistance.


Assuntos
Antifúngicos/metabolismo , Azóis/metabolismo , Cryptococcus gattii/enzimologia , Cryptococcus neoformans/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico Ativo , Clonagem Molecular , Criptococose/microbiologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/isolamento & purificação , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Marcação por Isótopo , Testes de Sensibilidade Microbiana , Noroeste dos Estados Unidos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
7.
Antimicrob Agents Chemother ; 57(11): 5478-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979758

RESUMO

Cryptococcus gattii is responsible for an expanding epidemic of serious infections in Western Canada and the Northwestern United States (Pacific Northwest). Some patients with these infections respond poorly to azole antifungals, and high azole MICs have been reported in Pacific Northwest C. gattii. In this study, multiple azoles (but not amphotericin B) had higher MICs for 25 Pacific Northwest C. gattii than for 34 non-Pacific Northwest C. gattii or 20 Cryptococcus neoformans strains. We therefore examined the roles in azole resistance of overexpression of or mutations in the gene (ERG11) encoding the azole target enzyme. ERG11/ACT1 mRNA ratios were higher in C. gattii than in C. neoformans, but these ratios did not differ in Pacific Northwest and non-Pacific Northwest C. gattii strains, nor did they correlate with fluconazole MICs within any group. Three Pacific Northwest C. gattii strains with low azole MICs and 2 with high azole MICs had deduced Erg11p sequences that differed at one or more positions from that of the fully sequenced Pacific Northwest C. gattii strain R265. However, the azole MICs for conditional Saccharomyces cerevisiae erg11 mutants expressing the 5 variant ERG11s were within 2-fold of the azole MICs for S. cerevisiae expressing the ERG11 gene from C. gattii R265, non-Pacific Northwest C. gattii strain WM276, or C. neoformans strains H99 or JEC21. We conclude that neither ERG11 overexpression nor variations in ERG11 coding sequences was responsible for the high azole MICs observed for the Pacific Northwest C. gattii strains we studied.


Assuntos
Cryptococcus gattii/genética , Cryptococcus neoformans/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Esterol 14-Desmetilase/genética , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Canadá/epidemiologia , Criptococose/epidemiologia , Criptococose/microbiologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/enzimologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Expressão Gênica , Teste de Complementação Genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Noroeste dos Estados Unidos/epidemiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Esterol 14-Desmetilase/metabolismo
8.
PLoS One ; 8(1): e55572, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383228

RESUMO

Following transplantation of hematopoietic lineage cells, genetic markers unique to the transplanted cells have been detected in non-hematopoietic recipient cells of human liver, vascular endothelium, intestinal epithelium and brain. The underlying mechanisms by which this occurs are unclear. Evidence from mice suggests it is due in part to fusion between cells of hematopoietic and non-hematopoietic origins; however, direct evidence for this in humans is scant. Here, by quantitative and statistical analysis of X- and Y-chromosome numbers in epithelial and non-epithelial intestinal cells from gender-mismatched hematopoietic cell transplant patients, we provide evidence that transplanted cells of the hematopoietic lineage incorporate into human intestinal epithelium through cell fusion. This is the first definitive identification of cell fusion between hematopoietic cells and any epithelial cell type in humans, and provides the basis for further understanding the physiological and potential pathological consequences of cell fusion in humans.


Assuntos
Células da Medula Óssea/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Adulto , Transplante de Medula Óssea , Fusão Celular , Cromossomos Humanos X , Feminino , Humanos , Cariótipo , Masculino , Reprodutibilidade dos Testes , Doadores de Tecidos
9.
Yeast ; 27(12): 1039-48, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20737428

RESUMO

Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2-containing plasmids or single-copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT-1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild-type C. albicans. We used PCR to fuse CaHygB or SAT-1 to approximately 1 kb of 5' and 3' noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild-type C. albicans strains. Homologous targeting frequencies were approximately 50-70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica , Genes Sintéticos , Higromicina B/farmacologia , Transformação Genética , Candida albicans/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Engenharia de Proteínas
10.
Eukaryot Cell ; 9(6): 960-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20348384

RESUMO

A major cause of azole resistance in Candida albicans is overexpression of CDR1, CDR2, and/or MDR1, which encode plasma membrane efflux pumps. To analyze the catalytic properties of these pumps, we used ACT1- and GAL1-regulated expression plasmids to overexpress CDR1, CDR2, or MDR1 in a C. albicans cdr1 cdr2 mdr1-null mutant. When the genes of interest were expressed, the resulting transformants were more resistant to multiple azole antifungals, and accumulated less [(3)H]fluconazole intracellularly, than empty-vector controls. Next, we used a GAL1-regulated dominant negative sec4 allele to cause cytoplasmic accumulation of post-Golgi secretory vesicles (PGVs), and we found that PGVs isolated from CDR1-, CDR2-, or MDR1-overexpressing cells accumulated much more [(3)H]fluconazole than did PGVs from empty-vector controls. The K(m)s (expressed in micromolar concentrations) and V(max)s (expressed in picomoles per milligram of protein per minute), respectively, for [(3)H]fluconazole transport were 0.8 and 0.91 for Cdr1p, 4.3 and 0.52 for Cdr2p, and 3.5 and 0.59 for Mdr1p. [(3)H]fluconazole transport by Cdr1p and Cdr2p required ATP and was unaffected by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), whereas [(3)H]fluconazole transport by Mdr1p did not require ATP and was inhibited by CCCP. [(3)H]fluconazole uptake by all 3 pumps was inhibited by all other azoles tested, with 50% inhibitory concentrations (IC(50)s; expressed as proportions of the [(3)H]fluconazole concentration) of 0.2 to 5.6 for Cdr1p, 0.3 to 3.1 for Cdr2p, and 0.3 to 3.1 for Mdr1p. The methods used in this study may also be useful for studying other plasma membrane transporters in C. albicans and other medically important fungi.


Assuntos
Antifúngicos/metabolismo , Candida albicans/metabolismo , Fluconazol/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Candida albicans/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Vesículas Secretórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...