Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 166: 23-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25065767

RESUMO

The present work is the first part of a comprehensive study on the use of guar gum to improve delivery of microscale zero-valent iron particles in contaminated aquifers. Guar gum solutions exhibit peculiar shear thinning properties, with high viscosity in static conditions and lower viscosity in dynamic conditions: this is beneficial both for the storage of MZVI dispersions, and also for the injection in porous media. In the present paper, the processes associated with guar gum injection in porous media are studied performing single-step and multi-step filtration tests in sand-packed columns. The experimental results of single-step tests performed by injecting guar gum solutions prepared at several concentrations and applying different dissolution procedures evidenced that the presence of residual undissolved polymeric particles in the guar gum solution may have a relevant negative impact on the permeability of the porous medium, resulting in evident clogging. The most effective preparation procedure which minimizes the presence of residual particles is dissolution in warm water (60°C) followed by centrifugation (procedure T60C). The multi-step tests (i.e. injection of guar gum at constant concentration with a step increase of flow velocity), performed at three polymer concentrations (1.5, 3 and 4g/l) provided information on the rheological properties of guar gum solutions when flowing through a porous medium at variable discharge rates, which mimic the injection in radial geometry. An experimental protocol was defined for the rheological characterization of the fluids in porous media, and empirical relationships were derived for the quantification of rheological properties and clogging with variable injection rate. These relationships will be implemented in the second companion paper (Part II) in a radial transport model for the simulation of large-scale injection of MZVI-guar gum slurries.


Assuntos
Recuperação e Remediação Ambiental/métodos , Galactanos/química , Água Subterrânea/química , Ferro/química , Mananas/química , Gomas Vegetais/química , Filtração , Polímeros , Porosidade , Reologia , Viscosidade
2.
J Contam Hydrol ; 166: 34-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063698

RESUMO

In the present work column transport tests were performed in order to study the mobility of guar-gum suspensions of microscale zero-valent iron particles (MZVI) in porous media. The results were analyzed with the purpose of implementing a radial model for the design of full scale interventions. The transport tests were performed using several concentrations of shear thinning guar gum solutions as stabilizer (1.5, 3 and 4g/l) and applying different flow rates (Darcy velocity in the range 1·10(-4) to 2·10(-3)m/s), representative of different distances from the injection point in the radial domain. Empirical relationships, expressing the dependence of the deposition and release parameters on the flow velocity, were derived by inverse fitting of the column transport tests using a modified version of E-MNM1D (Tosco and Sethi, 2010) and the user interface MNMs (www.polito.it/groundwater/software). They were used to develop a comprehensive transport model of MZVI suspensions in radial coordinates, called E-MNM1R, which takes into account the non Newtonian (shear thinning) rheological properties of the dispersant fluid and the porous medium clogging associated with filtration and sedimentation in the porous medium of both MZVI and guar gum residual undissolved particles. The radial model was run in forward mode to simulate the injection of MZVI dispersed in guar gum in conditions similar to those applied in the column transport tests. In a second stage, we demonstrated how the model can be used as a valid tool for the design and the optimization of a full scale intervention. The simulation results indicated that several concurrent aspects are to be taken into account for the design of a successful delivery of MZVI/guar gum slurries via permeation injection, and a compromise is necessary between maximizing the radius of influence of the injection and minimizing the injection pressure, to guarantee a sufficiently homogeneous distribution of the particles around the injection point and to prevent preferential flow paths.


Assuntos
Recuperação e Remediação Ambiental/métodos , Galactanos/química , Ferro/química , Mananas/química , Modelos Químicos , Gomas Vegetais/química , Filtração , Porosidade , Reologia , Soluções
3.
J Contam Hydrol ; 164: 88-99, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24963597

RESUMO

A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56µm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.


Assuntos
Recuperação e Remediação Ambiental/métodos , Galactanos/química , Ferro/química , Mananas/química , Gomas Vegetais/química , Tricloroetanos/química , Poluentes Químicos da Água/química , Bélgica , Água Subterrânea , Projetos Piloto , Porosidade
4.
J Colloid Interface Sci ; 421: 33-43, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24594029

RESUMO

Guar gum can be used to effectively improve stability and mobility of microscale zerovalent iron particles (MZVI) used in groundwater remediation. Guar gum is a food-grade, environment friendly natural polysaccharide, which is often used as thickening agent in a broad range of food, pharmaceutical and industrial applications. Guar gum solutions are non-Newtonian, shear thinning fluids, characterized by high viscosity in static conditions and low viscosity in dynamic conditions. In particular, the high zero shear viscosity guarantees the MZVI dispersion stability, reducing the sedimentation rate of the particles thus enabling its storage and field operations. In this work, a comprehensive rheological characterization of guar gum-based slurries of MZVI particles is provided. First, we derived a model to link the bulk shear viscosity to the concentration of guar gum and then we applied it for the derivation of a modified Stokes law for the prediction of the sedimentation rate of the iron particles. The influence of the preparation procedure (cold or hot dissolution and high shear processing) on the viscosity and on the stability of the suspensions was then assessed. Finally, the dosage and concentration of enzymes - an environment friendly breaker--were studied for enhancing and controlling the degradation kinetics of the suspensions. The derived empirical relationships can be used for the implementation of an iron slurry flow and transport model and for the design of full scale injection interventions.


Assuntos
Enzimas/química , Galactanos/química , Ferro/química , Mananas/química , Microesferas , Gomas Vegetais/química , Reologia , Adsorção , Cinética , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...