Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511603

RESUMO

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Assuntos
Núcleo de Edinger-Westphal , Doença de Parkinson , Animais , Ratos , Gânglios da Base/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Núcleo de Edinger-Westphal/metabolismo , Levodopa/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Rotenona/metabolismo , Substância Negra/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 995900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213293

RESUMO

According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.


Assuntos
Depressão , Fluoxetina , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Masculino , Camundongos , Carbonato de Cálcio , Hormônio Liberador da Corticotropina/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Histonas , Oxigenases de Função Mista , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Tirosina , Urocortinas/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233039

RESUMO

Depression and its increasing prevalence challenge patients, the healthcare system, and the economy. We recently created a mouse model based on the three-hit concept of depression. As genetic predisposition (first hit), we applied pituitary adenylate cyclase-activating polypeptide heterozygous mice on CD1 background. Maternal deprivation modeled the epigenetic factor (second hit), and the chronic variable mild stress was the environmental factor (third hit). Fluoxetine treatment was applied to test the predictive validity of our model. We aimed to examine the dynamics of the epigenetic marker acetyl-lysine 9 H3 histone (H3K9ac) and the neuronal activity marker FOSB in the prefrontal cortex (PFC) and hippocampus. Fluoxetine decreased H3K9ac in PFC in non-deprived animals, but a history of maternal deprivation abolished the effect of stress and SSRI treatment on H3K9ac immunoreactivity. In the hippocampus, stress decreased, while SSRI increased H3K9ac immunosignal, unlike in the deprived mice, where the opposite effect was detected. FOSB in stress was stimulated by fluoxetine in the PFC, while it was inhibited in the hippocampus. The FOSB immunoreactivity was almost completely abolished in the hippocampus of the deprived mice. This study showed that FOSB and H3K9ac were modulated in a territory-specific manner by early life adversities and later life stress interacting with the effect of fluoxetine therapy supporting the reliability of our model.


Assuntos
Fluoxetina , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Depressão/tratamento farmacológico , Depressão/genética , Epigênese Genética , Fluoxetina/farmacologia , Hipocampo , Histonas/genética , Lisina/genética , Masculino , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Córtex Pré-Frontal , Reprodutibilidade dos Testes
4.
J Psychiatry Neurosci ; 47(3): E162-E175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508327

RESUMO

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1), a cation channel, is expressed predominantly in primary sensory neurons, but its central distribution and role in mood control are not well understood. We investigated whether TRPA1 is expressed in the urocortin 1 (UCN1)-immunoreactive centrally projecting Edinger-Westphal nucleus (EWcp), and we hypothesized that chronic variable mild stress (CVMS) would reduce its expression in mice. We anticipated that TRPA1 mRNA would be present in the human EWcp, and that it would be downregulated in people who died by suicide. METHODS: We exposed Trpa1 knockout and wild-type mice to CVMS or no-stress control conditions. We then performed behavioural tests for depression and anxiety, and we evaluated physical and endocrinological parameters of stress. We assessed EWcp Trpa1 and Ucn1 mRNA expression, as well as UCN1 peptide content, using RNA-scope in situ hybridization and immunofluorescence. We tested human EWcp samples for TRPA1 using reverse transcription polymerase chain reaction. RESULTS: Trpa1 mRNA was colocalized with EWcp/UCN1 neurons. Non-stressed Trpa1 knockout mice expressed higher levels of Ucn1 mRNA, had less body weight gain and showed greater immobility in the forced swim test than wild-type mice. CVMS downregulated EWcp/Trpa1 expression and increased immobility in the forced swim test only in wild-type mice. We confirmed that TRPA1 mRNA expression was downregulated in the human EWcp in people who died by suicide. LIMITATIONS: Developmental compensations and the global lack of TRPA1 may have influenced our findings. Because experimental data came from male brains only, we have no evidence for whether findings would be similar in female brains. Because a TRPA1-specific antibody is lacking, we have provided mRNA data only. Limited access to high-quality human tissues restricted sample size. CONCLUSION: TRPA1 in EWcp/UCN1 neurons might contribute to the regulation of depression-like behaviour and stress adaptation response in mice. In humans, TRPA1 might contribute to mood control via EWcp/UCN1 neurons.


Assuntos
Núcleo de Edinger-Westphal , Suicídio , Animais , Núcleo de Edinger-Westphal/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Urocortinas/metabolismo
5.
J Neuroinflammation ; 19(1): 31, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109869

RESUMO

BACKGROUND: The neuropathological background of major depression and anxiety as non-motor symptoms of Parkinson's disease is much less understood than classical motor symptoms. Although, neurodegeneration of the Edinger-Westphal nucleus in human Parkinson's disease is a known phenomenon, its possible significance in mood status has never been elucidated. In this work we aimed at investigating whether neuron loss and alpha-synuclein accumulation in the urocortin 1 containing (UCN1) cells of the centrally-projecting Edinger-Westphal (EWcp) nucleus is associated with anxiety and depression-like state in the rat. METHODS: Systemic chronic rotenone administration as well as targeted leptin-saporin-induced lesions of EWcp/UCN1 neurons were conducted. Rotarod, open field and sucrose preference tests were performed to assess motor performance and mood status. Multiple immunofluorescence combined with RNAscope were used to reveal the functional-morphological changes. Two-sample Student's t test, Spearman's rank correlation analysis and Mann-Whitney U tests were used for statistics. RESULTS: In the rotenone model, besides motor deficit, an anxious and depression-like phenotype was detected. Well-comparable neuron loss, cytoplasmic alpha-synuclein accumulation as well as astro- and microglial activation were observed both in the substantia nigra pars compacta and EWcp. Occasionally, UCN1-immunoreactive neuronal debris was observed in phagocytotic microglia. UCN1 peptide content of viable EWcp cells correlated with dopaminergic substantia nigra cell count. Importantly, other mood status-related dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe) and noradrenergic (locus ceruleus and A5 area) brainstem centers did not show remarkable morphological changes. Targeted partial selective EWcp/UCN1 neuron ablation induced similar mood status without motor symptoms. CONCLUSIONS: Our findings collectively suggest that neurodegeneration of urocortinergic EWcp contributes to the mood-related non-motor symptoms in toxic models of Parkinson's disease in the rat.


Assuntos
Núcleo de Edinger-Westphal , Doença de Parkinson , Animais , Ansiedade , Humanos , Neurônios/fisiologia , Ratos , Urocortinas/genética
6.
Neuroscience ; 354: 11-29, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28450265

RESUMO

Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.


Assuntos
Depressão/etiologia , Depressão/genética , Modelos Animais de Doenças , Mutação/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Adaptação Ocular/fisiologia , Glândulas Suprarrenais/patologia , Animais , Animais Recém-Nascidos , Peso Corporal/genética , Hormônio Liberador da Corticotropina/sangue , Hormônio Liberador da Corticotropina/metabolismo , Depressão/sangue , Depressão/patologia , Comportamento Exploratório/fisiologia , Feminino , Masculino , Privação Materna , Camundongos , Camundongos Knockout , Núcleos da Rafe/patologia , Núcleos Septais/patologia , Estresse Psicológico/complicações , Natação/psicologia
7.
Neuroscience ; 330: 335-58, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27282087

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in stress adaptation with potential relevance in mood disorder management. PACAP deficient (KO) mice on CD1 background were shown to have depression-like phenotype. Here we aimed at investigating effects of chronic variable mild stress (CVMS) in non-injected, vehicle and imipramine-treated KO mice vs. wildtype (WT) counterparts. We hypothesized reduced FosB neuronal activity in stress-related centers, altered activity and peptide/neurotransmitter content of corticotropin-releasing factor (CRF) cells of the oval (ovBST) bed nucleus of stria terminalis (BST), urocortin 1 (Ucn1) neurons of centrally projecting Edinger-Westphal nucleus (cpEW) and serotonin (5HT) cells of dorsal raphe (DR) in PACAP deficiency. CVMS caused decreased body weight and increased adrenal size, corticosterone (CORT) titers and depression-like behavior in WT mice, in contrast to KO animals. CVMS increased FosB in the central (CeA) and medial amygdala, dorsomedial (dmBST), ventral (vBST), ovBST, CA1 area, dentate gyrus (DG), ventral lateral septum, parvo- (pPVN) and magnocellular paraventricular nucleus, lateral periaqueductal gray, cpEW and DR. Lack of PACAP blunted the CVMS-induced FosB rise in the CeA, ovBST, dmBST, vBST, CA1 area, pPVN and DR. The CVMS-induced FosB expression in ovBST-CRF and cpEW-Ucn1 neurons was abolished in KO mice. Although CVMS did not induce FosB in 5HT-DR neurons, PACAP KO mice had increased 5HT cell counts and 5HT content. We conclude that PACAP deficiency affects neuronal reactivity in a brain area-specific manner in stress centers, as well as in ovBST-CRF, cpEW-Ucn1 and 5HT-DR neurons leading to reduced CVMS response and altered depression level.


Assuntos
Tronco Encefálico/metabolismo , Sistema Límbico/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/metabolismo , Animais , Antidepressivos Tricíclicos/farmacologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , Doença Crônica , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Imipramina/farmacologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/patologia , Masculino , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/patologia , Serotonina/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...