Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6454-6464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699272

RESUMO

Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.

2.
ACS Catal ; 14(7): 4999-5005, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601777

RESUMO

Isolated platinum(II) ions anchored at acid sites in the pores of zeolite HZSM-5, initially introduced by aqueous ion exchange, were reduced to form platinum nanoparticles that are stably dispersed with a narrow size distribution (1.3 ± 0.4 nm in average diameter). The nanoparticles were confined in reservoirs within the porous zeolite particles, as shown by electron beam tomography and the shape-selective catalysis of alkene hydrogenation. When the nanoparticles were oxidatively fragmented in dry air at elevated temperature, platinum returned to its initial in-pore atomically dispersed state with a charge of +2, as shown previously by X-ray absorption spectroscopy. The results determine the conditions under which platinum is retained within the pores of HZSM-5 particles during redox cycles that are characteristic of the reductive conditions of catalyst operation and the oxidative conditions of catalyst regeneration.

3.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301281

RESUMO

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

4.
Adv Mater ; 36(5): e2305611, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37660323

RESUMO

Among the most stable metal-organic frameworks (MOFs) are those incorporating nodes that are metal oxide clusters with frames such as Zr6 O8 . This review is a summary of the structure, bonding, and reactivity of MOF node hydroxyl groups, emphasizing those bonded to nodes containing aluminum and zirconium ions. Hydroxyl groups are often present on these nodes, sometimes balancing the charges of the metal ions. They arise during MOF syntheses in aqueous media or in post-synthesis treatments. They are identified with infrared and 1 H nuclear magnetic resonance spectroscopies and characterized by their reactivities with polar compounds such as alcohols. Terminal OH, paired µ2 -OH, and aqua groups on nodes are catalytic sites in numerous reactions. Relatively unreactive hydroxyl groups (such as isolated µ2 -OH groups) may replace reactive groups and inhibit catalysis; some node hydroxyl groups (e.g., µ3 -OH) are mere spectators in catalysis. There are similarities between MOF node hydroxyl groups and those on the surfaces of bulk metal oxides, zeolites, and enzymes, but the comparisons are mostly inexact, and much remains to be understood about MOF node hydroxyl group chemistry. It is posited that understanding and controlling this chemistry will lead to tailored MOFs and improved adsorbents and catalysts.

5.
ACS Appl Mater Interfaces ; 15(48): 55885-55894, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991323

RESUMO

Atomically dispersed cerium catalysts on an inert, crystalline MgO powder support were prepared by using both Ce(III) and Ce(IV) precursors. The materials were used as catalysts for CO oxidation in a once-through flow reactor and characterized by atomic-resolution scanning transmission electron microscopy, X-ray absorption near-edge structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction, among other techniques, before and after catalysis. The most active catalysts, formed from the precursor incorporating Ce(III), displayed performance similar to that reported for bulk ceria under comparable conditions. The catalyst provided stable time-on-stream performance for as long as it was kept on-stream, 2 days, increasing slightly in activity as the atomically dispersed cerium ions were transformed into ceria nanodomains represented as CeOx and having increased reducibility on the MgO support. The results suggest how highly dispersed supported ceria catalysts with low cerium loadings can be prepared and may pave the way for improved efficiencies of cerium utilization in oxidation catalysis.

6.
J Phys Chem Lett ; 14(19): 4591-4599, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37166100

RESUMO

Quick-scanning X-ray absorption fine structure (QXAFS) measurements were used to characterize the exchanges of ethylene and CO ligands in a zeolite HY-supported single-site Rh complex at a sampling rate of 1.0 Hz. The two ligands were reversibly exchanged on the rhodium, with quantitative results determined for the C2H4-for-CO exchange that are consistent with a first-order process. The apparent rate constant for the exchange decreased with increasing temperature. Fourier-transform infrared spectra characterizing the C2H4 sorbed in the zeolite showed that the amount decreased with increasing temperature, consistent with the decrease in the exchange rate with increasing temperature. The results, illustrating the dynamics of ligand exchanges on a single-site supported metal catalyst, demonstrate the broad emerging applicability of the QXAFS technique for characterizing the dynamics of reactive intermediates on catalysts.

7.
Precis Chem ; 1(1): 3-13, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37025973

RESUMO

Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters. When the metals are noble, they are typically unstable-susceptible to sintering-especially under reducing conditions. Embedding the metals in supports such as organic polymers, metal oxides, and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants. An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports. The nests include zeolite pore mouths, zeolite surface cups (half-cages), raft-like islands of oxophilic metals bonded to metal oxide supports, clusters of non-noble metals (e.g., hosting noble metals as single-atom alloys), and nanoscale metal oxide islands that selectively bond to the catalytic metals, isolating them from the support. These examples illustrate a trend toward precision in the synthesis of solid catalysts, and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.

8.
Small ; 19(26): e2207272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942900

RESUMO

Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.

9.
J Am Chem Soc ; 145(5): 2911-2929, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715296

RESUMO

Catalysts for hydroformylation of ethene were prepared by grafting Rh into nests of ≡SiOZn-OH or ≡SiOCo-OH species prepared in dealuminated BEA zeolite. X-ray absorption spectra and infrared spectra of adsorbed CO were used to characterize the dispersion of Rh. The Rh dispersion was found to increase markedly with increasing M/Rh (M = Zn or Co) ratio; further increases in Rh dispersion occurred upon use for ethene hydroformylation catalysis. The turnover frequency for ethene hydroformylation measured for a fixed set of reaction conditions increased with the fraction of atomically dispersed Rh. The ethene hydroformylation activity is 15.5-fold higher for M = Co than for M = Zn, whereas the propanal selectivity is slightly greater for the latter catalyst. The activity of the Co-containing catalyst exceeds that of all previously reported Rh-containing bimetallic catalysts. The rates of ethene hydroformylation and ethene hydrogenation exhibit positive reaction orders in ethene and hydrogen but negative orders in carbon monoxide. In situ IR spectroscopy and the kinetics of the catalytic reactions suggest that ethene hydroformylation is mainly catalyzed by atomically dispersed Rh that is influenced by Rh-M interactions, whereas ethene hydrogenation is mainly catalyzed by Rh nanoclusters. In situ IR spectroscopy also indicates that the ethene hydroformylation is rate limited by formation of propionyl groups and by their hydrogenation, a conclusion supported by the measured H/D kinetic isotope effect. This study presents a novel method for creating highly active Rh-containing bimetallic sites for ethene hydroformylation and provides new insights into the mechanism and kinetics of this process.

10.
Mater Horiz ; 10(1): 187-196, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36330997

RESUMO

Metal organic frameworks (MOFs) that incorporate metal oxide cluster nodes, exemplified by UiO-66, have been widely studied, especially in terms of their deviations from the ideal, defect-free crystalline structures. Although defects such as missing linkers, missing nodes, and the presence of adventitious synthesis-derived node ligands (such as acetates and formates) have been proposed, their exact structures remain unknown. Previously, it was demonstrated that defects are correlated and span multiple unit cells. The highly specialized techniques used in these studies are not easily applicable to other MOFs. Thus, there is a need to develop new experimental and computational approaches to understand the structure and properties of defects in a wider variety of MOFs. Here, we show how low-frequency phonon modes measured by inelastic neutron scattering (INS) spectroscopy can be combined with density functional theory (DFT) simulations to provide unprecedented insights into the defect structure of UiO-66. We are able to identify and assign peaks in the fingerprint region (<100 cm-1) which correspond to phonon modes only present in certain defective topologies. Specifically, this analysis suggests that our sample of UiO-66 consists of predominantly defect-free fcu regions with smaller domains corresponding to a defective bcu topology with 4 and 2 acetate ligands bound to the Zr6O8 nodes. Importantly, the INS/DFT approach provides detailed structural insights (e.g., relative positions and numbers of acetate ligands) that are not accessible with microscopy-based techniques. The quantitative agreement between DFT simulations and the experimental INS spectrum combined with the relative simplicity of sample preparation, suggests that this methodology may become part of the standard and preferred protocol for the characterization of MOFs, and, in particular, for elucidating the structure defects in these materials.

11.
Nature ; 611(7935): 284-288, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289341

RESUMO

Single-atom catalysts1 make exceptionally efficient use of expensive noble metals and can bring out unique properties1-3. However, applications are usually compromised by limited catalyst stability, which is due to sintering3,4. Although sintering can be suppressed by anchoring the metal atoms to oxide supports1,5,6, strong metal-oxygen interactions often leave too few metal sites available for reactant binding and catalysis6,7, and when exposed to reducing conditions at sufficiently high temperatures, even oxide-anchored single-atom catalysts eventually sinter4,8,9. Here we show that the beneficial effects of anchoring can be enhanced by confining the atomically dispersed metal atoms on oxide nanoclusters or 'nanoglues', which themselves are dispersed and immobilized on a robust, high-surface-area support. We demonstrate the strategy by grafting isolated and defective CeOx nanoglue islands onto high-surface-area SiO2; the nanoglue islands then each host on average one Pt atom. We find that the Pt atoms remain dispersed under both oxidizing and reducing environments at high temperatures, and that the activated catalyst exhibits markedly increased activity for CO oxidation. We attribute the improved stability under reducing conditions to the support structure and the much stronger affinity of Pt atoms for CeOx than for SiO2, which ensures the Pt atoms can move but remain confined to their respective nanoglue islands. The strategy of using functional nanoglues to confine atomically dispersed metals and simultaneously enhance their reactivity is general, and we anticipate that it will take single-atom catalysts a step closer to practical applications.

12.
J Am Chem Soc ; 144(30): 13874-13887, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35854402

RESUMO

Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).

13.
J Phys Chem Lett ; 13(17): 3896-3903, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471032

RESUMO

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

14.
J Am Chem Soc ; 143(50): 21364-21378, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881868

RESUMO

Atomically dispersed noble metal catalysts have drawn wide attention as candidates to replace supported metal clusters and metal nanoparticles. Atomic dispersion can offer unique chemical properties as well as maximum utilization of the expensive metals. Addition of a second metal has been found to help reduce the size of Pt ensembles in bimetallic clusters; however, the stabilization of isolated Pt atoms in small nests of nonprecious metal atoms remains challenging. We now report a novel strategy for the design, synthesis, and characterization of a zeolite-supported propane dehydrogenation catalyst that incorporates predominantly isolated Pt atoms stably bonded within nests of Zn atoms located within the nanoscale pores of dealuminated zeolite Beta. The catalyst is stable in long-term operation and exhibits high activity and high selectivity to propene. Atomic resolution images, bolstered by X-ray absorption spectra, demonstrate predominantly atomic dispersion of the Pt in the nests and, with complementary infrared and nuclear magnetic resonance spectra, determine a structural model of the nested Pt.

15.
J Am Chem Soc ; 143(48): 20144-20156, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806881

RESUMO

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of extended X-ray absorption fine structure (EXAFS) spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

16.
J Am Chem Soc ; 143(31): 12165-12174, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314584

RESUMO

Recent work has exploited the ability of metal-organic frameworks (MOFs) to isolate Fe sites that mimic the structures of sites in enzymes that catalyze selective oxidations at low temperatures, opening new pathways for the valorization of underutilized feedstocks such as methane. Questions remain as to whether the radical-rebound mechanism commonly invoked in enzymatic and homogeneous systems also applies in these rigid-framework materials, in which resisting the overoxidation of desired products is a major challenge. We demonstrate that MOFs bearing Fe(II) sites within Fe3-µ3-oxo nodes active for conversion of CH4 + N2O mixtures (368-408 K) require steps beyond the radical-rebound mechanism to protect the desired CH3OH product. Infrared spectra and density functional theory show that CH3OH(g) is stabilized as Fe(III)-OCH3 groups on the MOF via hydrogen atom transfer with Fe(III)-OH groups, eliminating water. Consequently, upon addition of a protonic zeolite in inter- and intrapellet mixtures with the MOF, we observed increases in CH3OH selectivity with increasing ratio and proximity of zeolitic H+ to MOF-based Fe(II) sites, as methanol is protected within the zeolite. We infer from the data that CH3OH(g) is formed via the radical-rebound mechanism on Fe(II) sites but that subsequent transport and dehydration steps are required to protect CH3OH(g) from overoxidation. The results demonstrate that the radical-rebound mechanism commonly invoked in this chemistry is insufficient to explain the reactivity of these systems, that the selectivity-controlling steps involve both chemical and physical rate phenomena, as well as offering a strategy to mitigate overoxidation in these and similar systems.

17.
J Phys Chem Lett ; 12(26): 6085-6089, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170689

RESUMO

On metal oxide cluster nodes of metal-organic frameworks (MOFs), sites not bonded to linkers (e.g., defects and structural vacancies) control reactivity and catalysis. Attention has been focused on isolated, individual sites, but pair sites have been largely overlooked. We now show that the MOF hcp UiO-66, which incorporates dimeric Zr6O8 nodes bridged by µ2-OH groups, is an excellent platform for identifying and controlling adjacent sites consisting of OH groups and Zr4+ sites, which catalyze tert-butyl alcohol dehydration much more rapidly than isolated single sites.

18.
Acc Chem Res ; 54(8): 1982-1991, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33843190

RESUMO

ConspectusMetal-organic frameworks (MOFs) are a huge, rapidly growing class of crystalline, porous materials that consist of inorganic nodes linked by organic struts. Offering the advantages of thermal stability combined with high densities of accessible reactive sites, some MOFs are good candidate materials for applications in catalysis and separations. Such MOFs include those with nodes that are metal oxide clusters (e.g., Zr6O8, Hf6O8, and Zr12O22) and long rods (e.g., [Al(OH)]n). These nanostructured metal oxides are often compared with bulk metal oxides, but they are in essence different because their structures are not the same and because the MOFs have a high degree of uniformity, offering the prospect of a deep understanding of reactivity that is barely attainable for most bulk metal oxides because of their surface heterogeneity. This prospect is being realized as it has become evident that adventitious components on MOF node surfaces, besides the linkers, are crucial. These ligands arise from modulators, solvents, or products of solvent decomposition in MOF synthesis solutions, and because they are minor components that are often irregularly placed on defects, they may not show up in X-ray diffraction (XRD) crystal structures. Hydroxyl groups on the nodes (like those on bulk metal oxides) are regarded as native functional groups arising from solvent water, but they may barely be present initially, with common ligands instead being formate and acetate formed from modulators formic acid and acetic acid. (Formate also arises from the decomposition of dimethylformamide (DMF) solvent.) Replacement and control of the node ligands is facilitated by postsynthesis reactions (e.g., with alcohols or aqueous HCl/H2SO4 solutions) or as a result of high-temperature decomposition. In catalysis, adventitious node ligands can be (a) reaction inhibitors that block active sites on the nodes (e.g., formate blocking Zr, Hf, or Al Lewis acid sites); (b) reaction intermediates (e.g., ethoxy in ethanol dehydration); or (c) active sites themselves (e.g., terminal OH groups in tert-butyl alcohol (TBA) dehydration). Surprisingly, in view of the catalytic importance of such ligands on bulk metal oxides, their subtle chemistry on MOF nodes is only recently being determined. We describe (1) methods for identifying and quantifying node ligands (especially by IR spectroscopy and by 1H NMR spectroscopy of MOFs digested in NaOH/D2O solutions); (2) node ligand surface chemistry expressed as reaction networks; (3) catalysis, with mechanisms and energetics determined by density functional theory (DFT) and spectroscopy; and (4) MOF unzipping by reactions of linker carboxylate ligands with reactants such as alcohols that break node-linker bonds, a cause of catalyst deactivation and also an indicator of node-linker bond strength and MOF stability.

19.
Small ; 17(16): e2004665, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33185034

RESUMO

When metal nanoparticles on supports are made smaller and smaller-to the limit of atomic dispersion-they become cationic and take on new catalytic properties that are only recently being discovered. The synthesis of these materials is reviewed, including their structure characterization-especially by atomic-resolution electron microscopy and X-ray absorption and infrared spectroscopies-and relationships between structure and catalyst performance, for reactions including hydrogenations, oxidations, and the water gas shift. Structure determination is challenging because of the intrinsic nonuniformity of the support surfaces-and therefore the structures on them-but fundamental understanding has advanced rapidly, benefiting from nearly uniform catalysts consisting of metals on well-defined-crystalline-supports and their characterization by spectroscopy and microscopy. Recent advances in atomic-resolution electron microscopy have spurred the field, providing stunning images and deep insights into structure. The iridium catalysts have typically been made from organoiridium precursors, opening the way to understanding and control of the metal-support bonding and ligands on the metal, including catalytic reaction intermediates. Platinum catalysts are usually made with less precision, from salt precursors, but they catalyze a wider array of reactions than the iridium, typically being stable at higher temperatures and seemingly offering rich prospect for discovery of new catalysts.

20.
ACS Appl Mater Interfaces ; 12(47): 53537-53546, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180462

RESUMO

Many metal organic frameworks (MOFs) incorporate metal oxide clusters as nodes. Node sites where linkers are missing can be catalytic sites. We now show how to dial in the number and occupancy of such sites in MIL-53 and MIL-68, which incorporate aluminum-oxide-like nodes. The methods involve modulators used in synthesis and postsynthesis reactions to control the modulator-derived groups on these sites. We illustrate the methods using formic acid as a modulator, giving formate ligands on the sites, and these can be removed to leave µ2-OH groups and open Lewis acid sites. Methanol dehydration was used as a catalytic reaction to probe these sites, with infrared spectra giving evidence of methoxide ligands as reaction intermediates. Control of node surface chemistry opens the door for placement of a variety of ligands on a wide range of metal oxide cluster nodes for dialing in reactivity and catalytic properties of a potentially immense class of structurally well-defined materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...