Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Autophagy ; 19(2): 457-473, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35363116

RESUMO

Macroautophagy/autophagy, a highly conserved catabolic pathway that maintains proper cellular homeostasis is stringently regulated by numerous autophagy-related (Atg) proteins. Many studies have investigated autophagy regulation at the transcriptional level; however, relatively little is known about translational control. Here, we report the upstream open reading frame (uORF)-mediated translational control of multiple Atg proteins in Saccharomyces cerevisiae and in human cells. The translation of several essential autophagy regulators in yeast, including Atg13, is suppressed by canonical uORFs under nutrient-rich conditions, and is activated during nitrogen-starvation conditions. We also found that the predicted human ATG4B and ATG12 non-canonical uORFs suppress downstream coding sequence translation. These results demonstrate that uORF-mediated translational control is a widely used mechanism among ATG genes from yeast to human and suggest a model for how some ATG genes bypass the general translational suppression that occurs under stress conditions to maintain a proper level of autophagy.Abbreviations: 5' UTR, 5' untranslated region; Atg, autophagy-related; CDS, coding sequence; Cvt, cytoplasm-to-vacuole targeting; HBSS, Hanks' balanced salt solution; PA, protein A; PE, phosphati-dylethanolamine; PIC, preinitiation complex; PtdIns3K, phosphatidylinositol 3-kinase; qRT-PCR, quantitative reverse transcription PCR; Ubl, ubiquitin-like; uORF, upstream open reading frame; WT, wild-type.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fases de Leitura Aberta/genética , Autofagia/genética , Fatores de Transcrição/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Cardiovasc Res ; 118(4): 934-950, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33956077

RESUMO

Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Autofagia , Cardiomegalia , Doenças Cardiovasculares/metabolismo , Coração , Insuficiência Cardíaca/metabolismo , Humanos
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166053, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385519

RESUMO

Mevalonate kinase deficiency (MKD) is an autosomal recessive disorder in humans that causes systemic autoinflammatory problems to children. Previously, we used a yeast model to show that MKD results in mitochondrial malfunctioning that may finally induce mitophagy. Here, we proved that MKD indeed induced general autophagy as well as mitophagy in yeast, but these mechanisms did not go to completion. Therefore, the limitation of mevalonate kinase activity produces dysfunctional mitochondria that might not be recycled, causing metabolic dysfunctions in the cells. Understanding this mechanism may provide a piece in solving the nonspecific autoinflammatory response puzzle observed in MKD patients.


Assuntos
Deficiência de Mevalonato Quinase/genética , Mitofagia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Deleção de Genes , Humanos , Deficiência de Mevalonato Quinase/patologia
5.
Autophagy ; 17(7): 1636-1648, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32508216

RESUMO

Macroautophagy/autophagy is a key catabolic process in which different cellular components are sequestered inside double-membrane vesicles called autophagosomes for subsequent degradation. In yeast, autophagosome formation occurs at the phagophore assembly site (PAS), a specific perivacuolar location that works as an organizing center for the recruitment of different autophagy-related (Atg) proteins. How the PAS is localized to the vacuolar periphery is not well understood. Here we show that the vacuolar membrane protein Vac8 is required for correct vacuolar localization of the PAS. We provide evidence that Vac8 anchors the PAS to the vacuolar membrane by binding Atg13 and recruiting the Atg1 initiation complex. VAC8 deletion or mislocalization of the protein reduce autophagy activity, highlighting the importance of both the PAS and the correct vacuolar localization of the Atg1 initiation complex for efficient and robust autophagy.Abbreviations: AID: auxin-inducible degradation; Atg: autophagy-related; Cvt: cytoplasm-to-vacuole targeting; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; GFP: green fluorescent protein; IAA: 3-indole acetic acid; PAS: phagophore assembly site; RFP: red fluorescent protein.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Nitrogênio/deficiência , Proteínas de Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagossomos/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Microscopia de Fluorescência , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/fisiologia , Proteínas de Transporte Vesicular/metabolismo
6.
Autophagy ; 16(6): 973-974, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32401167

RESUMO

AMPK is one of the main regulators of energy homeostasis in the cell, achieving this role in part by upregulating autophagy in times of nutrient deprivation. Previous reports have described several AMPK substrates involved in autophagy regulation; however, there are still undiscovered AMPK downstream effectors that could play an important role in autophagy. In a new article, Dohmen et al. discovered that the CCNY-CDK16 complex is a novel AMPK substrate involved in autophagy activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Animais , Autofagia/fisiologia , Metabolismo Energético , Humanos , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
7.
Autophagy ; 16(7): 1172-1185, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31462158

RESUMO

Macroautophagy/autophagy, a highly conserved dynamic process, is one of the major degradative pathways in cells. So far, over 40 autophagy-related (ATG) genes have been identified in Saccharomyces cerevisiae, most of which have homologs in more complex eukaryotes. Autophagy plays a crucial role in cell survival and maintenance, and its dysfunction is related to various diseases, indicating that the proper regulation of autophagy is important. Although the overall process of autophagy has been extensively studied, in particular with regard to the function of the Atg proteins, relatively little is known about the regulatory mechanisms that control autophagy activity. Spt5 is one of the transcriptional factors that is universally conserved across all domains. This protein can form a complex with Spt4, together playing a central role in transcription. In complex eukaryotic cells, the Spt4-Spt5 complex plays a dual role in gene regulation, acting both to delay transcription through promoter-proximal pausing, and to facilitate transcriptional elongation. In contrast, in S. cerevisiae, only the positive function of the Spt4-Spt5 complex has been identified. Here, we show for the first time that the Spt4-Spt5 transcription factor complex negatively regulates ATG genes in S. cerevisiae, inhibiting autophagy activity during active growth. Under autophagy-inducing conditions, the repression is released by Spt5 phosphorylation, allowing an upregulation of autophagy activity. ABBREVIATIONS: AID: auxin-inducible degron; ATG: autophagy-related; ChIP: chromatin immunoprecipitation;Cvt: cytoplasm-to-vacuole targeting; DSIF: DRB sensitivity-inducible factor; NELF: negativeelongation factor; ORF: open reading frame; PA: protein A; PE: phosphatidylethanolamine;prApe1: precursor aminopeptidase I; RT-qPCR: real-time quantitative PCR; RNAP II: RNApolymerase II; TSS: transcription start site; WT: wild-type.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Autofagia/genética , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica , Regulação para Cima/genética
8.
Autophagy ; 16(6): 1007-1020, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31352862

RESUMO

Macroautophagy/autophagy is a conserved catabolic recycling pathway involving the sequestration of cytoplasmic components within double-membrane vesicles termed autophagosomes. The autophagy-related (Atg) protein Atg13 is a key member of the autophagy initiation complex. The Atg13 C terminus is an intrinsically disordered region (IDR) harboring a binding site for the vacuolar membrane protein Vac8. Recent reports suggest Atg13 acts as a hub to assemble the initiation complex, and also participates in membrane recognition. Here we show that the Atg13 C terminus directly binds to lipid membranes via electrostatic interactions between positively charged residues in Atg13 and negatively charged phospholipids as well as a hydrophobic insertion of a Phe residue. We identified 2 sets of residues in the Atg13 IDR that affect its phospholipid-binding properties; these residues overlap with the Vac8-binding domain of Atg13. Our data indicate that Atg13 binding to phospholipids and Vac8 is mutually exclusive, and both are required for efficient autophagy. ABBREVIATIONS: Atg: autophagy-related; CD: circular dichroism; Cvt: cytoplasm-to-vacuole targeting; IDR: intrinsically disordered region; ITC: isothermal calorimetry; MIM: MIT-interacting motif; MKO: multiple-knockout; PAS: phagophore assembly site; PC: phosphatidylcholine; PS: phosphatidylserine; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Membrana/metabolismo , Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Autofagossomos/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Calorimetria , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática , Vacúolos/metabolismo
9.
Autophagy ; 15(4): 750-751, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30885034

RESUMO

Deregulation of macroautophagy/autophagy, a conserved catabolic recycling pathway, has been implicated in the onset and development of several diseases. While post-translational regulation of auto-phagy-related (Atg) proteins has been an important research focus leading to significant breakthroughs in understanding autophagy regulation, less is known about the post-transcriptional regulation of ATG transcripts. In a recent study we showed that, during nitrogen starvation, the RNA-binding complex Pat1-Lsm is involved in binding and preventing the 3' to 5' exosome-mediated degradation of a specific subset of ATG mRNAs. Dephosphorylation of Pat1 at residues S456 and S457 facilitates ATG mRNA binding, resulting in ATG mRNA accumulation, Atg protein synthesis and robust autophagy induction. In addition, we present evidence that these processes are conserved in human cells. These results further elucidate our understanding of the post-transcriptional mechanism necessary for efficient induction of autophagy during stress conditions.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Humanos , Nitrogênio , RNA Mensageiro , Proteínas de Ligação a RNA , Saccharomyces cerevisiae
10.
Curr Genet ; 65(4): 847-849, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30783742

RESUMO

In this report, we discuss recent discoveries concerning the effects and specificity of different RNA-binding proteins (RBPs) as they pertain to macroautophagy/autophagy. Autophagy is a fundamental cellular degradation and recycling pathway, which has attracted substantial attention because defects in this process are associated with a wide range of human disorders including cancer, neurodegeneration, and metabolic diseases. Autophagy must be tightly controlled-either too much or too little can be deleterious. Therefore, understanding the complex regulation of autophagy is critical to achieve the goal of modulating the process for therapeutic purposes. Autophagy occurs constitutively, but is upregulated in response to stress. Here, we highlight a role for various RBPs in regulating particular autophagy-related (ATG) mRNAs. We briefly summarize recent publications, which focus on the RBPs Dhh1, Pat1, Lsm1-Lsm7 and Dcp2 in the post-transcriptional regulation of certain mRNAs that encode key components of the autophagy machinery. Finally, we consider how the established role of these and other RBPs in enhancing decapping and downregulating mRNAs is not their only function when it comes to regulating stress-related transcripts. Most ATG genes are downregulated during growth, in contrast to the vast majority of the genome; we discuss how certain regulatory factors play a key role in maintaining autophagy at a basal level during growth, while allowing for a rapid increase when cells encounter various stress conditions.


Assuntos
Autofagia/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , RNA Helicases DEAD-box/genética , Humanos , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Inanição/genética , Inanição/metabolismo
11.
J Clin Invest ; 129(4): 1626-1640, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720463

RESUMO

The discovery of recurrent mutations in subunits of the vacuolar-type H+-translocating ATPase (v-ATPase) in follicular lymphoma (FL) highlights a role for the amino acid- and energy-sensing pathway to mTOR in the pathogenesis of this disease. Here, through the use of complementary experimental approaches involving mammalian cells and Saccharomyces cerevisiae, we have demonstrated that mutations in the human v-ATPase subunit ATP6V1B2 (also known as Vma2 in yeast) activate autophagic flux and maintain mTOR/TOR in an active state. Engineered lymphoma cell lines and primary FL B cells carrying mutated ATP6V1B2 demonstrated a remarkable ability to survive low leucine concentrations. The treatment of primary FL B cells with inhibitors of autophagy uncovered an addiction for survival for FL B cells harboring ATP6V1B2 mutations. These data support the idea of mutational activation of autophagic flux by recurrent hotspot mutations in ATP6V1B2 as an adaptive mechanism in FL pathogenesis and as a possible new therapeutically targetable pathway.


Assuntos
Morte Celular Autofágica , Linfoma Folicular/enzimologia , Mutação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/genética , ATPases Vacuolares Próton-Translocadoras/genética
12.
Mol Cell ; 73(2): 314-324.e4, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30527663

RESUMO

Macroautophagy/autophagy is a key catabolic recycling pathway that requires fine-tuned regulation to prevent pathologies and preserve homeostasis. Here, we report a new post-transcriptional pathway regulating autophagy involving the Pat1-Lsm (Lsm1 to Lsm7) mRNA-binding complex. Under nitrogen-starvation conditions, Pat1-Lsm binds a specific subset of autophagy-related (ATG) transcripts and prevents their 3' to 5' degradation by the exosome complex, leading to ATG mRNA stabilization and accumulation. This process is regulated through Pat1 dephosphorylation, is necessary for the efficient expression of specific Atg proteins, and is required for robust autophagy induction during nitrogen starvation. To the best of our knowledge, this work presents the first example of ATG transcript regulation via 3' binding factors and exosomal degradation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Nitrogênio/deficiência , Proteínas de Ligação ao Cap de RNA/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 3' não Traduzidas , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Humanos , Células Jurkat , Complexos Multiproteicos , Fosforilação , Ligação Proteica , Proteínas de Ligação ao Cap de RNA/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
13.
Nat Cell Biol ; 20(3): 233-242, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29476151

RESUMO

Macroautophagy, initially described as a non-selective nutrient recycling process, is essential for the removal of multiple cellular components. In the past three decades, selective autophagy has been characterized as a highly regulated and specific degradation pathway for removal of unwanted cytosolic components and damaged and/or superfluous organelles. Here, we discuss different types of selective autophagy, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and highlight unanswered questions in the field.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Animais , Autofagossomos/patologia , Humanos , Ligantes , Lisossomos/patologia , Mitocôndrias/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
15.
Elife ; 52016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26812546

RESUMO

Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.


Assuntos
Ataxia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Autofagia , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação , Animais , Ataxia/congênito , Ataxia/fisiopatologia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Criança , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Drosophila/genética , Drosophila/fisiologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Irmãos , Turquia
16.
Free Radic Biol Med ; 90: 206-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26616647

RESUMO

Homocysteine-inducible, endoplasmic reticulum (ER) stress-inducible, ubiquitin-like domain member 1 (HERPUD1), an ER resident protein, is upregulated in response to ER stress and Ca(2+) homeostasis deregulation. HERPUD1 exerts cytoprotective effects in various models, but its role during oxidative insult remains unknown. The aim of this study was to investigate whether HERPUD1 contributes to cytoprotection in response to redox stress and participates in mediating stress-dependent signaling pathways. Our data showed that HERPUD1 protein levels increased in HeLa cells treated for 30 min with H2O2 or angiotensin II and in aortic tissue isolated from mice treated with angiotensin II for 3 weeks. Cell death was higher in HERPUD1 knockdown (sh-HERPUD1) HeLa cells treated with H2O2 in comparison with control (sh-Luc) HeLa cells. This effect was abolished by the intracellular Ca(2+) chelating agent BAPTA-AM or the inositol 1,4,5-trisphosphate receptor (ITPR) antagonist xestospongin B, suggesting that the response to H2O2 was dependent on intracellular Ca(2+) stores and the ITPR. Ca(2+) kinetics showed that sh-HERPUD1 HeLa cells exhibited greater and more sustained cytosolic and mitochondrial Ca(2+) increases than sh-Luc HeLa cells. This higher sensitivity of sh-HERPUD1 HeLa cells to H2O2 was prevented with the mitochondrial permeability transition pore inhibitor cyclosporine A. We concluded that the HERPUD1-mediated cytoprotective effect against oxidative stress depends on the ITPR and Ca(2+) transfer from the ER to mitochondria.


Assuntos
Apoptose , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Proteínas de Membrana/fisiologia , Estresse Oxidativo , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo
17.
Autophagy ; 11(6): 865-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075875

RESUMO

Hexokinase is the first enzyme in the glycolytic pathway catalyzing the reaction in which glucose is phosphorylated into glucose-6-phosphate. Mammals possess 4 isoforms of hexokinase; HK2 (hexokinase 2) is the predominant form in insulin-sensitive tissues such as adipocytes, as well as skeletal and cardiac muscle. In addition to its function in glucose metabolism, HK2 is associated with cardiomyocyte protection against mitochondrial-mediated apoptotic cell death; whether or not HK2 played a role in cardioprotective autophagy was yet to be discovered. However, in a recent study highlighted by a punctum in this issue of Autophagy, Roberts et al. addressed this possibility, uncovering a direct link between HK2, TORC1, and autophagy regulation.


Assuntos
Autofagia/fisiologia , Hexoquinase/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Glicólise/fisiologia , Humanos , Fosforilação
18.
Circ Res ; 116(3): 456-67, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634969

RESUMO

Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease.


Assuntos
Autofagia , Doenças Cardiovasculares/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos , Miócitos Cardíacos/fisiologia
19.
Cell Cycle ; 13(14): 2281-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24897381

RESUMO

Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin-proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program.


Assuntos
Autofagia/efeitos dos fármacos , Dexametasona/toxicidade , Glucocorticoides/toxicidade , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Linhagem Celular , Relação Dose-Resposta a Droga , Dinaminas/genética , Dinaminas/metabolismo , Proteínas de Choque Térmico/deficiência , Proteínas de Choque Térmico/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Mitofagia/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas/genética , Proteínas/metabolismo , Quinazolinonas/farmacologia , Interferência de RNA , Ratos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Proteína Sequestossoma-1 , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
20.
Biochim Biophys Acta ; 1833(12): 3295-3305, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120520

RESUMO

Herp is an endoplasmic reticulum (ER) stress inducible protein that participates in the ER-associated protein degradation (ERAD) pathway. However, the contribution of Herp to other protein degradation pathways like autophagy and its connection to other types of stress responses remain unknown. Here we report that Herp regulates autophagy to clear poly-ubiquitin (poly-Ub) protein aggregates. Proteasome inhibition and glucose starvation (GS) led to a high level of poly-Ub protein aggregation that was drastically reduced by stably knocking down Herp (shHerp cells). The enhanced removal of poly-Ub inclusions protected cells from death caused by glucose starvation. Under basal conditions and increasingly after stress, higher LC3-II levels and GFP-LC3 puncta were observed in shHerp cells compared to control cells. Herp knockout cells displayed basal up-regulation of two essential autophagy regulators-Atg5 and Beclin-1, leading to increased autophagic flux. Beclin-1 up-regulation was due to a reduction in Hrd1 dependent proteasomal degradation, and not at transcriptional level. The consequent higher autophagic flux was necessary for the clearance of aggregates and for cell survival. We conclude that Herp operates as a relevant factor in the defense against glucose starvation by modulating autophagy levels. These data may have important implications due to the known up-regulation of Herp in pathological states such as brain and heart ischemia, both conditions associated to acute nutritional stress.


Assuntos
Autofagia , Citoproteção , Proteínas de Membrana/deficiência , Poliubiquitina/química , Regulação para Cima , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Poliubiquitina/metabolismo , Inibidores de Proteassoma/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Quaternária de Proteína , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...