Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 8: 101348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430251

RESUMO

The expression of c-fos mRNA is an indirect marker of neuronal activity. RNAscope ACD Bio RNAscope (now Biotechne) is a proprietary in-situ mRNA detection technology using branched DNA amplification and z paired probes to deliver a robust and specific assay designed primarily for use on formalin fixed paraffin sections [1]. In the present study we adapted this technology to be used in frozen sections to allow quantitative analysis of c-fos gene expression in different mouse brain regions during neuropharmacology studies. The method was applied by Cosi et al. 2021 [2] and the image analysis is described here in details. •The patented RNAscope (ACD Bio) flourescent in-situ hybridisation technology designed primarily for use on formalin fixed paraffin sections was adapted to be used on frozen section from mouse brain.•We carefully controlled sample preparation and handling to maximise mRNA preservation and used the fluorescent properties of the fast Red substrate combined with fluorescent whole slide scanning and image analysis.•A customized algorithm was set up for image analysis•The method developed permitted the quantitative analysis of c-fos expression in specific brain regions from whole sections.

3.
Eur J Pharmacol ; 890: 173635, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33065094

RESUMO

F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.


Assuntos
Antipsicóticos/farmacologia , Benzopiranos/farmacologia , Antagonistas de Dopamina/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antipsicóticos/uso terapêutico , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Benzopiranos/uso terapêutico , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalepsia/tratamento farmacológico , Células Cultivadas , Dopamina/metabolismo , Antagonistas de Dopamina/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Genes fos/efeitos dos fármacos , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Piperazinas/uso terapêutico , Prolactina/sangue , Ratos Sprague-Dawley , Receptores de Dopamina D3/metabolismo , Sulfonamidas/uso terapêutico , Ácido Valproico/toxicidade
4.
Front Pharmacol ; 11: 1003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765257

RESUMO

Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.

5.
Schizophr Bull ; 46(5): 1269-1281, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32043133

RESUMO

The treatment of negative symptoms (NS) in psychosis represents an urgent unmet medical need given the significant functional impairment it contributes to psychosis syndromes. The lack of progress in treating NS is impacted by the lack of known pathophysiology or associated quantitative biomarkers, which could provide tools for research. This current analysis investigated potential associations between NS and an extensive battery of behavioral and brain-based biomarkers in 932 psychosis probands from the B-SNIP database. The current analyses examined associations between PANSS-defined NS and (1) cognition, (2) pro-/anti-saccades, (3) evoked and resting-state electroencephalography (EEG), (4) resting-state fMRI, and (5) tractography. Canonical correlation analyses yielded symptom-biomarker constructs separately for each biomarker modality. Biomarker modalities were integrated using canonical discriminant analysis to summarize the symptom-biomarker relationships into a "biomarker signature" for NS. Finally, distinct biomarker profiles for 2 NS domains ("diminished expression" vs "avolition/apathy") were computed using step-wise linear regression. NS were associated with cognitive impairment, diminished EEG response amplitudes, deviant resting-state activity, and oculomotor abnormalities. While a connection between NS and poor cognition has been established, association to neurophysiology is novel, suggesting directions for future mechanistic studies. Each biomarker modality was related to NS in distinct and complex ways, giving NS a rich, interconnected fingerprint and suggesting that any one biomarker modality may not adequately capture the full spectrum of symptomology.

6.
Curr Top Med Chem ; 11(15): 1902-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21470172

RESUMO

G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor.


Assuntos
Descoberta de Drogas/métodos , Receptores Acoplados a Proteínas G/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo
7.
J Med Chem ; 52(13): 3855-68, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19456097

RESUMO

Obesity is a major risk factor in the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease, and cancer. Several pieces of evidence across different species, including primates, underscore the implication of the histamine 3 receptor (H(3)R) in the regulation of food intake and body weight and the potential therapeutic effect of H(3)R inverse agonists. A pharmacophore model, based on public information and validated by previous investigations, was used to design several potential scaffolds. Out of these scaffolds, the 5-hydroxyindole-2-carboxylic acid amide appeared to be of great potential as a novel series of H(3)R inverse agonist. Extensive structure-activity relationships revealed the interconnectivity of microsomal clearance and hERG (human ether-a-go-go-related gene) affinity with lipophilicity, artificial membrane permeation, and basicity. This effort led to the identification of compounds reversing the (R)-alpha-methylhistamine-induced water intake increase in Wistar rats and, further, reducing food intake in diet-induced obese Sprague-Dawley rats. Of these, the biochemical, pharmacokinetic, and pharmacodynamic characteristics of (4,4-difluoropiperidin-1-yl)[1-isopropyl-5-(1-isopropylpiperidin-4-yloxy)-1H-indol-2-yl]methanone 36 are detailed.


Assuntos
Amidas/química , Agonistas dos Receptores Histamínicos/uso terapêutico , Indóis/química , Obesidade/tratamento farmacológico , Receptores Histamínicos H3/efeitos dos fármacos , Amidas/farmacocinética , Amidas/uso terapêutico , Animais , Permeabilidade da Membrana Celular , Biologia Computacional , Desenho de Fármacos , Agonistas dos Receptores Histamínicos/farmacocinética , Agonistas dos Receptores Histamínicos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Indóis/farmacocinética , Indóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade
8.
Psychopharmacology (Berl) ; 179(1): 292-302, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15678362

RESUMO

RATIONALE: LY354740 is a recently developed metabotropic glutamatergic receptor 2 and 3 (mGluR2/3) agonist. A high density of mGluR2 has been reported in terminal fields of the perforant path in rodents and humans, suggesting its involvement in cognitive functions mediated by the temporal lobe, including memory. A small number of in vivo studies in rodents have assessed the effects of LY354740 on memory tasks, reporting the induction of impaired memory for spatial orientation in a water maze task and for delayed match and non-match to position in an operant version of these tasks. OBJECTIVE: In the present primate study, we used radioautography to describe the distribution and intensity of (3)H-LY354740 binding in the hippocampal formation of the common marmoset monkey (Callithrix jacchus) relative to the rat. In the major, in vivo part of the study, the effects of systemic LY354740 on computerized tasks of attention and memory were investigated. METHODS: Adult common marmosets were trained to perform a five-choice serial reaction time (5-CSRT) task and a concurrent delayed match-to-position (CDMP) task from the Cambridge Neuropsychological Automated test Battery (CANTAB). Filter tests of LY354740 effects on motor dexterity and motivation for reward revealed high inter-individual variation in sensitivity; therefore, on the 5-CSRT, subjects were tested at a dose range of 3--10 mg/kg, and on the CDMP, subjects were tested at 1--3 or 3--10 mg/kg. RESULTS: Radioautography revealed a relatively low level of (3)H-LY354740 binding in the marmoset hippocampal formation compared to the rat. Despite low binding, LY354740 reduced sustained-attention accuracy in the 5-CSRT, and reduced accuracy in two stages of the CDMP. CONCLUSIONS: The current study provides novel evidence for the importance of mGluR2/3 in the regulation of primate cognitive functioning.


Assuntos
Atenção/efeitos dos fármacos , Compostos Bicíclicos com Pontes/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Memória/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Animais , Autorradiografia , Western Blotting , Compostos Bicíclicos com Pontes/farmacocinética , Callithrix , Feminino , Masculino , Testes Neuropsicológicos , Tempo de Reação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...