Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Invest ; : e14177, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381498

RESUMO

BACKGROUND: The role of insulin resistance in hepatic fibrosis in Metabolic dysfunction-Associated SteatoHepatitis (MASH) remains unclear. Carcinoembryonic Antigen-related Cell Adhesion Molecule1 protein (CEACAM1) promotes insulin clearance to maintain insulin sensitivity and repress de novo lipogenesis, as bolstered by the development of insulin resistance and steatohepatitis in AlbuminCre + Cc1fl/fl mice with liver-specific mouse gene encoding CEACAM1 protein (Ceacam1) deletion. We herein investigated whether these mice also developed hepatic fibrosis and whether hepatic CEACAM1 is reduced in patients with MASH at different fibrosis stages. METHODS: AlbuminCre + Cc1fl/fl mice were fed a regular or a high-fat diet before their insulin metabolism and action were assessed during IPGTT, and their livers excised for histochemical, immunohistochemical and Western blot analysis. Sirius red staining was used to assess fibrosis, and media transfer was employed to examine whether mutant hepatocytes activated hepatic stellate cells (HSCs). Hepatic CEACAM1 protein levels in patients with varying disease stages were assessed by ELISA. RESULTS: Hepatocytic deletion of Ceacam1 caused hyperinsulinemia-driven insulin resistance emanating from reduced hepatic insulin clearance. AlbuminCre + Cc1fl/fl livers showed inflammation, fibrosis and hepatic injury, with more advanced bridging and chicken-wire hepatic fibrosis under high-fat conditions. Media transferred from hepatocytes isolated from mutant mice activated control HSCs, likely owing to their elevated endothelin1 content. Interestingly, hepatic CEACAM1 levels were lower in the livers of patients with MASH and declined gradually with advanced fibrosis stage. CONCLUSIONS: Hepatic CEACAM1 levels declined with progression of MASH in humans. The phenotype of AlbuminCre + Cc1fl/fl mice assigned a key role to CEACAM1 loss from hepatocytes in hepatic fibrosis independently of other liver cells.

2.
J Exp Clin Cancer Res ; 42(1): 264, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821954

RESUMO

BACKGROUND: Disseminated tumor cells (DTCs) can enter a dormant state and cause no symptoms in cancer patients. On the other hand, the dormant DTCs can reactivate and cause metastases progression and lethal relapses. In prostate cancer (PCa), relapse can happen after curative treatments such as primary tumor removal. The impact of surgical removal on PCa dissemination and dormancy remains elusive. Furthermore, as dormant DTCs are asymptomatic, dormancy-induction can be an operational cure for preventing metastases and relapse of PCa patients. METHODS: We used a PCa subcutaneous xenograft model and species-specific PCR to survey the DTCs in various organs at different time points of tumor growth and in response to tumor removal. We developed in vitro 2D and 3D co-culture models to recapitulate the dormant DTCs in the bone microenvironment. Proliferation assays, fluorescent cell cycle reporter, qRT-PCR, and Western Blot were used to characterize the dormancy phenotype. We performed RNA sequencing to determine the dormancy signature of PCa. A drug repurposing algorithm was applied to predict dormancy-inducing drugs and a top candidate was validated for the efficacy and the mechanism of dormancy induction. RESULTS: We found DTCs in almost all mouse organs examined, including bones, at week 2 post-tumor cell injections. Surgical removal of the primary tumor reduced the overall DTC abundance, but the DTCs were enriched only in the bones. We found that osteoblasts, but not other cells of the bones, induced PCa cell dormancy. RNA-Seq revealed the suppression of mitochondrial-related biological processes in osteoblast-induced dormant PCa cells. Importantly, the mitochondrial-related biological processes were found up-regulated in both circulating tumor cells and bone metastases from PCa patients' data. We predicted and validated the dormancy-mimicking effect of PF-562,271 (PF-271), an inhibitor of focal adhesion kinase (FAK) in vitro. Decreased FAK phosphorylation and increased nuclear translocation were found in both co-cultured and PF-271-treated C4-2B cells, suggesting that FAK plays a key role in osteoblast-induced PCa dormancy. CONCLUSIONS: Our study provides the first insights into how primary tumor removal enriches PCa cell dissemination in the bones, defines a unique osteoblast-induced PCa dormancy signature, and identifies FAK as a PCa cell dormancy gatekeeper.


Assuntos
Recidiva Local de Neoplasia , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Próstata/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Recidiva , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009344

RESUMO

We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.

4.
Metabolism ; 121: 154801, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058224

RESUMO

OBJECTIVE: NAFLD is a complex disease marked by cellular abnormalities leading to NASH. NAFLD patients manifest low hepatic levels of CEACAM1, a promoter of insulin clearance. Consistently, Cc1-/- null mice displayed spontaneous hyperinsulinemia/insulin resistance and steatohepatitis. Liver-specific reconstitution of Ceacam1 reversed these metabolic anomalies in 8-month-old Cc1-/-xliver+ mice fed a regular chow diet. The current study examined whether it would also reverse progressive hepatic fibrosis in mice fed a high-fat (HF) diet. METHODS: 3-Month-old mice were fed a high-fat diet for 3-5 months, and metabolic and histopathological analysis were conducted to evaluate their NASH phenotype. RESULTS: Reconstituting CEACAM1 to Cc1-/- livers curbed diet-induced liver dysfunction and NASH, including macrovesicular steatosis, lobular inflammation, apoptosis, oxidative stress, and chicken-wire bridging fibrosis. Persistence of hepatic fibrosis in HF-fed Cc1-/- treated with nicotinic acid demonstrated a limited role for lipolysis and adipokine release in hepatic fibrosis caused by Ceacam1 deletion. CONCLUSIONS: Restored metabolic and histopathological phenotype of HF-fed Cc1-/-xliver+xliver+ assigned a critical role for hepatic CEACAM1 in preventing NAFLD/NASH including progressive hepatic fibrosis.


Assuntos
Antígeno Carcinoembrionário/fisiologia , Cirrose Hepática/genética , Animais , Antígeno Carcinoembrionário/genética , Dieta Hiperlipídica , Insulina/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Metabolism ; 107: 154215, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32209360

RESUMO

OBJECTIVE: PTEN haploinsufficiency plays an important role in prostate cancer development in men. However, monoallelic deletion of Pten gene failed to induce high prostate intraepithelial neoplasia (PIN) until Pten+/- mice aged or fed a high-calorie diet. Because CEACAM1, a cell adhesion molecule with a potential tumor suppression activity, is induced in Pten+/- prostates, the study aimed at examining whether the rise of CEACAM1 limited neoplastic progression in Pten+/- prostates. METHODS: Pten+/- were crossbred with Cc1-/- mice harboring a null deletion of Ceacam1 gene to produce Pten+/-/Cc1-/- double mutants. Prostates from 7-month old male mice were analyzed histologically and biochemically for PIN progression. RESULTS: Deleting Ceacam1 in Pten+/- mice caused an early development of high-grade PIN in parallel to hyperactivation of PI3 kinase/Akt and Ras/MAP kinase pathways, with an increase in cell proliferation, epithelial-to-mesenchymal transition, angiogenesis and inflammation relative to Pten+/- and Cc1-/- individual mutants. It also caused a remarkable increase in lipogenesis in prostate despite maintaining insulin sensitivity. Concomitant Ceacam1 deletion with Pten+/- activated the IL-6/STAT3 signaling pathways to suppress Irf-8 transcription that in turn, led to a decrease in the expression level of promyelocytic leukemia gene, a well characterized tumor suppressor in prostate. CONCLUSIONS: Ceacam1 deletion accelerated high-grade prostate intraepithelial neoplasia in Pten haploinsufficient mice while preserving insulin sensitivity. This demonstrated that the combined loss of Ceacam1 and Pten advanced prostate cancer by increasing lipogenesis and modifying the STAT3-dependent inflammatory microenvironment of prostate.


Assuntos
Antígeno Carcinoembrionário/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Animais , Progressão da Doença , Haploinsuficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
IJU Case Rep ; 2(2): 61-64, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32743374

RESUMO

INTRODUCTION: Neoadjuvant chemotherapy in high-risk, locally advanced prostate cancer remains an understudied area of prostate cancer. Chemotherapy continues to be a viable option. The combination with surgery may be desired but lacks data for complete recommendation. CASE PRESENTATION: We demonstrate the successful utilization of chemotherapy in the neoadjuvant arena. A 70-year-old male was diagnosed with high-risk prostate cancer on biopsy. Upon multiparametric magnetic resonance imaging, the patient had local rectal wall invasion and stage T4 N0 M0 after a negative bone scan. After treatment with androgen-deprivation therapy and docetaxel, repeat multiparametric magnetic resonance imaging showed regression of rectal invasion. The patient elected for prostatectomy and avoided proctectomy and colostomy. The patient's postoperative prostate-specific antigen was undetectable on initial follow-up. CONCLUSION: We show that neoadjuvant chemotherapy merits further study and may provide a more permanent surgical option for patients.

7.
Hepatol Commun ; 2(1): 35-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29404511

RESUMO

Exenatide, a glucagon-like peptide-1 receptor agonist, induces insulin secretion. Its role in insulin clearance has not been adequately examined. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance to maintain insulin sensitivity. Feeding C57BL/6J mice a high-fat diet down-regulates hepatic Ceacam1 transcription to cause hyperinsulinemia, insulin resistance, and hepatic steatosis, as in Ceacam1 null mice (Cc1-/- ). Thus, we tested whether exenatide regulates Ceacam1 expression in high-fat diet-fed mice and whether this contributes to its insulin sensitizing effect. Exenatide (100 nM) induced the transcriptional activity of wild-type Ceacam1 promoter but not the constructs harboring block mutations of peroxisome proliferator-activated receptor response element and retinoid X receptor alpha, individually or collectively, in HepG2 human hepatoma cells. Chromatin immunoprecipitation analysis demonstrated binding of peroxisome proliferator-activated receptor gamma to Ceacam1 promoter in response to rosiglitazone and exenatide. Consistently, exenatide induced Ceacam1 messenger RNA expression within 12 hours in the absence but not in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9-39. Exenatide (20 ng/g body weight once daily intraperitoneal injection in the last 30 days of feeding) restored hepatic Ceacam1 expression and insulin clearance to curb diet-induced metabolic abnormalities and steatohepatitis in wild-type but not Cc1-/- mice fed a high-fat diet for 2 months. Conclusion: Exenatide promotes insulin clearance in parallel with insulin secretion to prevent chronic hyperinsulinemia and the resulting hepatic steatosis, and this contributes to its insulin sensitizing effect. Our data further highlight the relevance of physiologic insulin metabolism in maintaining insulin sensitivity and normal lipid metabolism. (Hepatology Communications 2018;2:35-47).

8.
J Lipid Res ; 57(12): 2163-2175, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27777319

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.


Assuntos
Adipócitos/metabolismo , Antígeno Carcinoembrionário/fisiologia , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Fibrose , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Niacina/farmacologia , Obesidade/etiologia , Obesidade/metabolismo
9.
Mol Metab ; 4(3): 186-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737954

RESUMO

OBJECTIVE: Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. METHODS: 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. RESULTS: In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. CONCLUSION: High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

10.
PLoS One ; 8(5): e64436, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691217

RESUMO

The Goldblatt's 2 kidney 1 clip (2K1C) rat animal model of renovascular hypertension is characterized by ischemic nephropathy of the clipped kidney. 2K1C rats were treated with a specific peroxisome proliferator-activated receptor δ (PPARδ) agonist, HPP593. Clipped kidneys from untreated rats developed tubular and glomerular necrosis and massive interstitial, periglomerular and perivascular fibrosis. HPP593 kidneys did not exhibit any histochemical features of necrosis; fibrotic lesions were present only in perivascular areas. Necrosis in the untreated clipped kidneys was associated with an increased oxidative stress, up regulation and mitochondrial translocation of the pro-death protein BNIP3 specifically in tubules. In the kidneys of HPP593-treated rats oxidative stress was attenuated and BNIP3 protein decreased notably in the mitochondrial fraction when compared to untreated animals. In untreated clipped kidneys, mitochondria were dysfunctional as revealed by perturbations in the levels of MCAD, COXIV, TFAM, and Parkin proteins and AMPK activation, while in HPP593-treated rats these proteins remained at the physiological levels. Nuclear amounts of oxidative stress-responsive proteins, NRF1 and NRF2 were below physiological levels in treated kidneys. Mitochondrial biogenesis and autophagy were inhibited similarly in both treated and untreated 2K1C kidneys as indicated by a decrease in PGC1-α and deficiency of the autophagy-essential proteins LC3-II and ATG5. However, HPP593 treatment resulted in increased accumulation of p62 protein, an autophagic substrate and an enhancer of NRF2 activity. Therefore, inhibition of BNIP3 activation by the preservation of mitochondrial function and control of oxidative stress by PPARδ is the most likely mechanism to account for the prevention of necrotic death in the kidney under conditions of persistent ischemia.


Assuntos
Isquemia/patologia , Rim/irrigação sanguínea , Necrose/prevenção & controle , PPAR delta/agonistas , Animais , Sequência de Bases , Doença Crônica , Primers do DNA , Masculino , Ratos , Ratos Sprague-Dawley
11.
Reprod Biol Endocrinol ; 10: 15, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22360878

RESUMO

BACKGROUND: Placental malfunction in preeclampsia is believed to be a consequence of aberrant differentiation of trophoblast lineages and changes in utero-placental oxygenation. The transcription factor Snail, a master regulator molecule of epithelial-mesenchymal transition in embryonic development and in cancer, is shown to be involved in trophoblast differentiation as well. Moreover, Snail can be controlled by oxidative stress and hypoxia. Therefore, we examined the expression of Snail and its downstream target, e-cadherin, in human normal term, preterm and preeclamptic placentas, and in pregnant rats that developed preeclampsia-like symptoms in the response to a 20-fold increase in sodium intake. METHODS: Western blotting analysis was used for comparative expression of Snail and e- cadherin in total protein extracts. Placental cells expressing Snail and e-cadherin were identified by immunohistochemical double-labeling technique. RESULTS: The levels of Snail protein were decreased in human preeclamptic placentas by 30% (p < 0.01) compared to normal term, and in the rat model by 40% (p < 0.001) compared to control placentas. In preterm placentas, the levels of Snail expression varied, yet there was a strong trend toward statistical significance between preterm and preeclamptic placentas. In humans, e-cadherin protein level was 30% higher in preeclamptic (p < 0.05) placentas and similarly, but not significantly (p = 0.1), high in the preterm placentas compared to normal term. In the rat model of preeclampsia, e-cadherin was increased by 60% (p < 0.01). Immunohistochemical examination of human placentas demonstrated Snail-positive staining in the nuclei of the villous trophoblasts and mesenchymal cells and in the invasive trophoblasts of the decidua. In the rat placenta, the majority of Snail positive cells were spongiotrophoblasts of the junctional zone, while in the labyrinth, Snail-positive sinusoidal giant trophoblasts cells were found in some focal areas located close to the junctional zone. CONCLUSION: We demonstrated that human preeclampsia and the salt-induced rat model of preeclampsia are associated with the reduced levels of Snail protein in placenta. Down-regulation of the transcription factor Snail in placental progenitor cell lineages, either by intrinsic defects and/or by extrinsic and maternal factors, may affect normal placenta development and function and thus contribute to the pathology of preeclampsia.


Assuntos
Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Animais , Caderinas/biossíntese , Caderinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Trabalho de Parto Prematuro/metabolismo , Gravidez , Ratos , Fatores de Transcrição da Família Snail , Cloreto de Sódio , Trofoblastos/metabolismo
12.
South Med J ; 104(4): 278-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21606698

RESUMO

Kaposi sarcoma is a vascular tumor manifesting as nodular lesions on skin, mucous membranes, or internal organs. This is a case of a 42-year-old human immunodeficiency virus- (HIV) positive bisexual male, not on highly active antiretroviral therapy (HAART) since diagnosis four years ago. He presented with a three-day history of abdominal pains, fever, vomiting, and a one-week history of melena stools. Endoscopy revealed Kaposi sarcoma in the stomach and duodenum. Postendoscopy, he developed acute abdomen. Exploratory laparotomy revealed extensive Kaposi sarcoma of the gastrointestinal tract with appendiceal involvement. The patient underwent appendectomy and had an uneventful recovery. A review of the literature discusses appendiceal Kaposi sarcoma with appendicitis, a rare but critical manifestation of gastrointestinal Kaposi sarcoma.


Assuntos
Neoplasias do Apêndice/diagnóstico , Neoplasias do Apêndice/cirurgia , Soropositividade para HIV , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/cirurgia , Adulto , Apendicectomia , Bissexualidade , Endoscopia Gastrointestinal , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/cirurgia , Humanos , Masculino
13.
Gastroenterology ; 135(6): 2084-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18848945

RESUMO

BACKGROUND & AIMS: Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 causes hyperinsulinemia and insulin resistance, which result from impaired insulin clearance, in liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice (L-SACC1). These mice also develop steatosis. Because hepatic fat accumulation precedes hepatitis, lipid peroxidation, and apoptosis in the pathogenesis of nonalcoholic steatohepatitis (NASH), we investigated whether a high-fat diet, by causing inflammation, is sufficient to induce hepatitis and other features of NASH in L-SACC1 mice. METHODS: L-SACC1 and wild-type mice were placed on a high-fat diet for 3 months, then several biochemical and histologic analyses were performed to investigate the NASH phenotype. RESULTS: A high-fat diet caused hepatic macrosteatosis and hepatitis, characterized by increased hepatic tumor necrosis factor alpha levels and activation of the NF-kappaB pathway in L-SACC1 but not in wild-type mice. The high-fat diet also induced necrosis and apoptosis in the livers of the L-SACC1 mice. Insulin resistance in L-SACC1 fed a high-fat diet increased the hepatic procollagen protein level, suggesting a role in the development of fibrosis. CONCLUSIONS: A high-fat diet induces key features of human NASH in insulin-resistant L-SACC1 mice, validating this model as a tool to study the molecular mechanisms of NASH.


Assuntos
Antígeno Carcinoembrionário/genética , DNA/genética , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Resistência à Insulina , Mutação , Animais , Apoptose , Northern Blotting , Western Blotting , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/imunologia , Feminino , Peroxidação de Lipídeos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase
14.
Hum Pathol ; 33(11): 1092-7, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12454813

RESUMO

We present 3 adults with cardiac rhabdomyomas, 2 in the atria and 1 in the right ventricle. One atrial tumor was discovered incidentally, and 1 resulted in supraventricular tachycardia. The ventricular lesion caused ventricular tachycardia. Compared with congenital rhabdomyomas, the tumors are relatively cellular, the cells are smaller, there are few spider cells, and there is evidence of cell proliferation. Two of the 3 tumors demonstrated spindling in contrast to adult rhabdomyomas of the head and neck. Although surgical excision was possible in all patients, long-term follow-up will be required to determine the true biologic behavior of these neoplasms.


Assuntos
Neoplasias Cardíacas/patologia , Rabdomioma/patologia , Adulto , Biomarcadores/análise , Feminino , Átrios do Coração/química , Átrios do Coração/patologia , Neoplasias Cardíacas/complicações , Neoplasias Cardíacas/cirurgia , Ventrículos do Coração/química , Ventrículos do Coração/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Rabdomioma/complicações , Rabdomioma/cirurgia , Taquicardia Supraventricular/etiologia , Taquicardia Supraventricular/patologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...