Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241237107, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497604

RESUMO

Removing water-soluble chlorides (WSCs) through water extraction is a common pretreatment technology for recycling municipal solid waste incineration (MSWI) fly ash (FA). However, the extracted solution often contains heavy metals, the concentrations of which exceed standards for effluent. This study aims to investigate the adsorption of heavy metals by palygorskite in water-extracted solution and explore the feasibility of stabilizing heavy metals through comilling palygorskite-adsorbed heavy metals (PAHMs) with water-extracted fly ash (WFA). The experimental parameters include: two-stage water extraction with a liquid-to-solid ratio of 5, adding 0, 0.125, 0.25, 0.5, 1, 2 or 3 g of palygorskite to 100 mL of water-extracted solution, and comilling the mixture of PAHMs and WFA for 0, 0.5, 1, 2, 4, 8, 12, 24 or 96 hours. The experimental results revealed that 3 g of palygorskite in 100 mL of extracted solution could absorb Pb, Cd, Cr, Cu and Zn, meeting the effluent standards. The total amount of Pb, Cd, Cr, Cu and Zn removal rate reached 99.7%. Moreover, 98.44% of the WSCs were not adsorbed, the water extraction process for removing WSCs was not compromised. After the comilling of PAHMs and WFA, the distribution of the heavy metals in the milled blended powder was greater than 99.44%; moreover, toxicity characteristic leaching procedure concentrations were determined to conform to regulatory standards, and the sequential extraction procedure revealed that the heavy metals tended to be in stable fractions. This achieves the goal of preventing secondary pollution from heavy metals during the MSWI FA recycling process.

2.
Water Sci Technol ; 71(11): 1597-603, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26038923

RESUMO

Chlorella sp. is often used in the treatment of wastewater to produce lipids, a practice which could go beyond wastewater treatment and be used to generate green energy. Our objectives here are to explore how the ratio of carbon to nitrogen (C/N) affects the removal of carbon and nitrogen in a wastewater treatment system, while simultaneously generating biomass and lipids. In this study, the C/N ratio is adjusted to 0.002, 6, 8, 10, 12 and 32. The results indicate that a C/N of 10 is sufficient to ensure the consumption of carbon and nitrogen, achieving the lowest concentration in the shortest culturing time (32 h). When nitrogen is lacking in the culture, there will be a slight decrease in the rate of carbon consumption which leads to a limitation of nitrogen and an increase in the lipid/cell density even at 96 h of culture time. The highest lipid content (0.57 g/L) and lipid increase rate (0.4 g/L) occurs with a C/N of 32. The greatest amount of biomass, 1.42 g/L is achieved when the C/N is 32. The carbon concentration is the main factor affecting the nitrogen consumption and the increase in the biomass and lipid content.


Assuntos
Carbono/metabolismo , Chlorella/metabolismo , Química Verde/métodos , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biomassa , Metabolismo dos Lipídeos
3.
Waste Manag ; 33(4): 858-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23375995

RESUMO

A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium-silicate-hydrates (C-S-H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.


Assuntos
Cinza de Carvão/química , Materiais de Construção , Incineração , Resíduos Industriais
4.
J Hazard Mater ; 244-245: 412-20, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23274941

RESUMO

The process of mechanical milling has been found to effectively stabilize heavy metals in municipal solid waste incinerator (MSWI) fly ash, as well as to restrain the evaporation of heavy metals during thermo-treatment. This method is adopted in this study and the composition and degree of amorphization adjusted to improve the efficiency of crystalline anorthite synthesis. Different milling times (1, 5, 10 and 20 h) and different sintering temperatures (900, 950, 1000, 1100, 1200 and 1300 °C) are utilized. The extracted fly ash and kaolin (KEFA) were mixed to simulate an anorthite composite. The experimental results indicate that the degree of amorphization of the KEFA increased as the milling time increased. Furthermore, the synthesis of crystalline anorthite increased as the degree of amorphization increased. The milling process allowed a reduction in the synthesization temperature from 1300 °C to 950 °C. The heavy metals are sealed in during the liquid sintering phase, which reduces the amount of heavy metals released from the sintered specimens.


Assuntos
Silicatos de Alumínio/química , Cinza de Carvão/química , Poluentes Ambientais/química , Incineração , Caulim/química , Silicatos de Alumínio/análise , Cinza de Carvão/análise , Poluentes Ambientais/análise , Metais Pesados/análise , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Temperatura , Difração de Raios X
5.
J Hazard Mater ; 195: 281-90, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21917374

RESUMO

The milling process has a verified stabilizing effect on the leaching of heavy metals into the environment from municipal solid waste incinerator (MSWI) fly ash. The aim of this current study is to further improve and confirm the effectiveness of the process by exploring its effects on the evaporation of heavy metals and on the mechanical characteristics of the sintered MSWI fly ash. The chemical composition of the MSWI fly ash is first altered by the addition of water treatment plant sludge (WTS) and cullet, and then processed to produce sintered specimens suitable for reuse as an aggregate. In the experiments, fly ash, WTS and cullet (40%: 30%: 30%, respectively) were mixed and milled for 1h. Samples were sintered for 60 min at temperatures of 850, 900, 950 and 1000°C. Test results confirm that milling increased the compressive strength of the sintered specimens. The compressive strength of unmilled specimens sintered at 900°C was only 90 kg/cm(2), but that of milled specimens was 298 kg/cm(2) when sintered at only 850°C. There was also an improvement in the soundness ranging from 11.04% to 0.02% and a reduction in the evaporation rates of Pb, Cd, Cu, Cr and Zn from 54-64%, 43-49%, 38-43%, 30-40% and 14-35% (900-1000°C) to 19-21%, 19-21%, 14-19%, 12-19% and 14-17% (850-1000°C), respectively. The improvement in compressive strength was attained by the combination in the liquid sintering stage of powdered ash with the amorphous material. The amorphousness of the material also helped to seal the surface of the fly ash, thereby reducing the evaporation of heavy metals during the heating process.


Assuntos
Cinza de Carvão , Incineração/instrumentação , Metais Pesados/isolamento & purificação , Eliminação de Resíduos/instrumentação , Temperatura Alta , Metais Pesados/química , Microscopia Eletrônica de Varredura , Difração de Raios X
6.
Waste Manag ; 31(2): 318-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20547049

RESUMO

The wet milling process had been found to effectively stabilize lead in fly ash. This study adopts this method and looks at the effect of different milling solutions to improve the efficiency of lead stabilization. Different milling solutions (water, phosphoric acid and ethanol) and different milling times (1, 24, 48 and 96 h) were selected as parameters. Since lead oxide can be identified by XRD in this experiment's samples, 5% lead oxide was added to the extracted mixed fly ash to make instrumental analysis easier. The experimental results indicate that the effect of stabilization of lead after milling could exceed 96%. During milling with water, considerable lead leached into the water in the initial stage (1 h) of the process, but a stable level was reached as the milling time increased. After milling with ethanol and 0.2 M phosphoric acids, the efficiency could exceed 93% after 1 h of milling time. The results of the sequential extraction procedure (SEP) results show that the residual fraction could be increased from 8.93% to 56.16% when a 0.2 M phosphoric acid solution was used. Clearly the choice of an appropriate milling solution can enhance lead stabilization in the fly ash.


Assuntos
Carbono/química , Incineração , Chumbo/análise , Material Particulado/química , Eliminação de Resíduos , Cinza de Carvão , Etanol , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Ácidos Fosfóricos , Fatores de Tempo , Água , Difração de Raios X
7.
J Hazard Mater ; 174(1-3): 586-91, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19828240

RESUMO

Water-extracted municipal solid waste incinerator (MSWI) fly ash was treated by a process of wet ball milling, using desalinated water as the milling solution. We investigated the influence of the milling process on the partitioning and leaching characteristics of lead (Pb) and the particle size distribution. The results show that 93.11% of the Pb was partitioned into the milled ash, 2.60% to the milling balls, and 0.17% to the inner surface of the milling jar, while amounts lower than the detection limit remained in the milled solution. As tested by the toxicity characteristic leaching procedure (TCLP), the leaching of Pb was inhibited after short-term grinding (from 5.2 to 1.2mg/L after 1h of milling), and further reduced by about 96% after 96h of ball milling. The mobility of the heavy metal was analyzed after a sequential extraction procedure. The results also show that Pb tended to become more stable after milling. The size distribution of particles was analyzed by a laser particle diameter analyzer and their morphology during grinding was observed using scanning electron microscopy. The median size of the fly ash decreased significantly from 36 to 5 microm after 0.5h of milling, but then only slightly, from 5 to 2 microm, with further milling from 0.5 to 96 h, due to the concurrent actions of fragmentation and/or agglomeration. The reason for the stabilization of Pb by ball milling was probably that Pb was sealed in the milled fly ash during the fragmentation and agglomeration of particles.


Assuntos
Carbono , Incineração , Chumbo/química , Material Particulado , Cinza de Carvão , Metais Pesados/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...