Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 60(1): 48-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740919

RESUMO

BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.


Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genética
2.
Neuropediatrics ; 53(5): 309-320, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605965

RESUMO

INTRODUCTION: Arthrogryposis is characterized by the presence of multiple contractures at birth and can be caused by pathogenic variants in TTN (Titin). Exons and variants that are not expressed in one of the three major isoforms of titin are referred to as "metatranscript-only" and have been considered to be only expressed during fetal development. Recently, the metatranscript-only variant (c.39974-11T > G) in TTN with a second truncating TTN variant has been linked to arthrogryposis multiplex congenita and myopathy. METHODS: Via exome sequencing we identified the TTN c.39974-11T > G splice variant in trans with one of three truncating variants (p.Arg8922*, p.Lys32998Asnfs*63, p.Tyr10345*) in five individuals from three families. Clinical presentation and muscle ultrasound as well as MRI images were analyzed. RESULTS: All five patients presented with generalized muscular hypotonia, reduced muscle bulk, and congenital contractures most prominently affecting the upper limbs and distal joints. Muscular hypotonia persisted and contractures improved over time. One individual, the recipient twin in the setting of twin-to-twin transfusion syndrome, died from severe cardiac hypertrophy 1 day after birth. Ultrasound and MRI imaging studies revealed a recognizable pattern of muscle involvement with striking fibrofatty involvement of the hamstrings and calves, and relative sparing of the femoral adductors and anterior segment of the thighs. CONCLUSION: The recurrent TTN c.39974-11T > G variant consistently causes congenital arthrogryposis and persisting myopathy providing evidence that the metatranscript-only 213 to 217 exons impact muscle elasticity during early development and beyond. There is a recognizable pattern of muscle involvement, which is distinct from other myopathies and provides valuable clues for diagnostic work-up.


Assuntos
Artrogripose , Contratura , Doenças Musculares , Artrogripose/diagnóstico por imagem , Artrogripose/genética , Conectina/genética , Contratura/diagnóstico por imagem , Contratura/genética , Humanos , Recém-Nascido , Hipotonia Muscular , Mutação , Isoformas de Proteínas
3.
Prenat Diagn ; 42(7): 901-910, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35574990

RESUMO

OBJECTIVES: To examine the diagnostic yield of trio exome sequencing in fetuses with multiple structural defects with no pathogenic findings in cytogenetic and microarray analyses. METHODS: We recruited 51 fetuses with two or more defects, non-immune fetal hydrops or fetal akinesia deformation syndrome|or fetal akinesia deformation sequence (FADS). Trio exome sequencing was performed on DNA from chorionic villi samples and parental blood. Detection of genomic variation and prioritization of clinically relevant variants was performed according to in-house standard operating procedures. RESULTS: Median maternal and gestational age was 32.0 years and 21.0 weeks, respectively. Forty-three (84.3%) fetuses had two or more affected organ systems. The remaining fetuses had isolated fetal hydrops or FADS. In total, the exome analysis established the genetic cause for the clinical abnormalities in 22 (43.1%, 95% CI 29.4%-57.8%) pregnancies. CONCLUSIONS: In fetuses with multiple defects, hydrops or FADS and normal standard genetic results, trio exome sequencing has the potential to identify genetic anomalies in more than 40% of cases.


Assuntos
Exoma , Hidropisia Fetal , Adulto , Feminino , Feto/diagnóstico por imagem , Humanos , Hidropisia Fetal/genética , Pais , Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodos
4.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34656997

RESUMO

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismo
6.
Genet Med ; 23(12): 2352-2359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446925

RESUMO

PURPOSE: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.


Assuntos
Leucoencefalopatias , Estudos Transversais , Progressão da Doença , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...