Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Commun ; 14(1): 3375, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291203

RESUMO

Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Criança , Humanos , Imunoterapia Adotiva , Linfócitos T , Imunoterapia , Osteossarcoma/terapia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Fosfatase Alcalina
2.
Curr Opin Oncol ; 35(2): 100-106, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700456

RESUMO

PURPOSE OF REVIEW: Checkpoint inhibitors (CPIs) have revolutionized treatment outcomes for patients with malignant melanoma. Long-term follow-up shows that a substantial subset of patients who exhibit clinical responses achieve extended overall survival. Nevertheless, most patients do not achieve durable benefit from CPIs, and improvements are urgently needed. The clinical efficacy of CPIs depends on highly variable preexisting spontaneous T-cell immune responses. Cancer vaccines represent an independent treatment modality uniquely capable of expanding the repertoire of tumor-specific T cells in cancer patients and thus have the capacity to compensate for the variability in spontaneous T-cell responses. Vaccines are, therefore, considered attractive components in a CPI-combination strategy. RECENT FINDINGS: Here we discuss recent results obtained through therapeutic vaccination against telomerase human telomerase reverse transcriptase (hTERT). Recent publications on translational research and clinical results from phase I trials indicate that vaccination against telomerase in combination with CPIs provides relevant immune responses, negligible added toxicity, and signals of clinical efficacy. CONCLUSION: In the near future, randomized data from clinical trials involving therapeutic cancer vaccines and checkpoint inhibitors will be available. Positive readout may spark broad development and allow cancer vaccines to find their place in the clinic as an important component in multiple future CPI combinations.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias Cutâneas , Telomerase , Humanos , Vacinas Anticâncer/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Vacinação
3.
J Transl Med ; 20(1): 419, 2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089578

RESUMO

BACKGROUND: This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment. METHODS: The trial was an open-label, single-center phase I/IIa study. Eligible patients had unresectable metastatic melanoma. Patients received up to 9 UV1 vaccinations and four ipilimumab infusions. Clinical responses were assessed according to RECIST 1.1. Patients were followed up for progression-free survival (PFS) and overall survival (OS). Whole-exome and RNA sequencing, and multiplex immunofluorescence were performed on the biopsies. T cell receptor (TCR) sequencing was performed on the peripheral blood and tumor tissues. RESULTS: Twelve patients were enrolled in the study. Vaccine-specific immune responses were detected in 91% of evaluable patients. Clinical responses were observed in four patients. The mPFS was 6.7 months, and the mOS was 66.3 months. There was no association between baseline tumor mutational burden, neoantigen load, IFN-γ gene signature, tumor-infiltrating lymphocytes, and response to therapy. Tumor telomerase expression was confirmed in all available biopsies. Vaccine-enriched TCR clones were detected in blood and biopsy, and an increase in the tumor IFN-γ gene signature was detected in clinically responding patients. CONCLUSION: Clinical responses were observed irrespective of established predictive biomarkers for checkpoint inhibitor efficacy, indicating an added benefit of the vaccine-induced T cells. The clinical and immunological read-out warrants further investigation of UV1 in combination with checkpoint inhibitors. Trial registration Clinicaltrials.gov identifier: NCT02275416. Registered October 27, 2014. https://clinicaltrials.gov/ct2/show/NCT02275416?term=uv1&draw=2&rank=6.


Assuntos
Melanoma , Telomerase , Humanos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Melanoma/patologia , Microambiente Tumoral , Vacinação
4.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613827

RESUMO

BACKGROUND: Therapeutic cancer vaccines represent a promising approach to improve clinical outcomes with immune checkpoint inhibition. UV1 is a second generation telomerase-targeting therapeutic cancer vaccine being investigated across multiple indications. Although telomerase is a near-universal tumor target, different treatment combinations applied across indications may affect the induced immune response. Three phase I/IIa clinical trials covering malignant melanoma, non-small cell lung cancer, and prostate cancer have been completed, with patients in follow-up for up to 8 years. METHODS: 52 patients were enrolled across the three trials. UV1 was given as monotherapy in the lung cancer trial and concurrent with combined androgen blockade in the prostate cancer trial. In the melanoma study, patients initiated ipilimumab treatment 1 week after the first vaccine dose. Patients were followed for UV1-specific immune responses at frequent intervals during vaccination, and every 6 months for up to 8 years in a follow-up period. Phenotypic and functional characterizations were performed on patient-derived vaccine-specific T cell responses. RESULTS: In total, 78.4% of treated patients mounted a measurable vaccine-induced T cell response in blood. The immune responses in the malignant melanoma trial, where UV1 was combined with ipilimumab, occurred more rapidly and frequently than in the lung and prostate cancer trials. In several patients, immune responses peaked years after their last vaccination. An in-depth characterization of the immune responses revealed polyfunctional CD4+ T cells producing interferon-γ and tumor necrosis factor-α on interaction with their antigen. CONCLUSION: Long-term immunomonitoring of patients showed highly dynamic and persistent telomerase peptide-specific immune responses lasting up to 7.5 years after the initial vaccination, suggesting a plausible functional role of these T cells in long-term survivors. The superior immune response kinetics observed in the melanoma study substantiate the rationale for future combinatorial treatment strategies with UV1 vaccination and checkpoint inhibition for rapid and frequent induction of anti-telomerase immune responses in patients with cancer.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Neoplasias da Próstata , Telomerase , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Seguimentos , Humanos , Imunidade , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Melanoma/tratamento farmacológico , Peptídeos , Neoplasias da Próstata/patologia , Neoplasias Cutâneas , Vacinação , Vacinas de Subunidades Antigênicas , Melanoma Maligno Cutâneo
5.
HLA ; 99(4): 313-327, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073457

RESUMO

Accurate and full-length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest-matched HLA allele among the known alleles in IPD-IMGT/HLA Database. These database-matching approaches have demonstrated very high performance when typing well characterized HLA alleles. However, as they rely on the completeness of the HLA database, they are not optimal for detecting novel or less well characterized alleles. Furthermore, the database-matching approaches are also not adequate in the context of cancer, where a comprehensive characterization of somatic HLA variation and expression patterns of a tumor's HLA locus may guide therapy and clinical outcome, because of the pivotal role HLA alleles play in tumor antigen recognition and immune escape. Here, we describe a personalized HLA typing approach applied to WES data that leverages the strengths of database-matching approaches while simultaneously allowing for the discovery of novel HLA alleles and tumor-specific HLA variants, through the systematic integration of germline and somatic variant calling. We applied this approach on WES from 10 metastatic melanoma patients and validated the HLA typing results using HLA targeted NGS sequencing from patients where at least one HLA germline candidate was detected on Class I HLA. Targeted NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In total, five out of the six detected HLA germline variants were because of Class I ambiguities at the third or fourth fields, and their detection recovered the correct HLA allele genotype. The sixth germline variant let to the formal discovery of a novel Class I allele. Finally, we demonstrated a substantially improved somatic variant detection accuracy in HLA alleles with a 91% of success rate in simulated experiments. The approach described here may allow the field to genotype more accurately using WES data, leading to the discovery of novel HLA alleles and help characterize the relationship between somatic variation in the HLA region and immunosurveillance.


Assuntos
Antígenos HLA , Neoplasias , Alelos , Genótipo , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Teste de Histocompatibilidade/métodos , Humanos , Neoplasias/genética , Análise de Sequência de DNA
6.
FASEB J ; 35(9): e21750, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34424568

RESUMO

Success of adoptive cell therapy mainly depends on the ability of immune cells to persist and function optimally in the immunosuppressive tumor microenvironment. Although present at the cancer site, immune cells become exhausted and/or inhibited, due to the presence of inhibitory receptors such as PD-L1 on malignant cells. Novel genetic strategies to manipulate the PD1/PD-L1 axis comprise (i) PD-1 reversion where the receptor intracellular domain is replaced with an activating unit, (ii) the use of anti-PD-L1 CAR or (iii) the disruption of the PD-1 gene. We here present an alternative strategy to equip therapeutic cells with a truncated PD-1 (tPD-1) to abrogate PD-1/PD-L1 inhibition. We show that engagement of tPD-1 with PD-L1-positive tumor unleashes NK-92 activity in vitro. Furthermore, this binding was sufficiently strong to induce killing of targets otherwise not recognized by NK-92, thus increasing the range of targets. In vivo treatment with NK-92 tPD-1 cells led to reduced tumor growth and improved survival. Importantly, tPD-1 did not interfere with tumor recognition in PD-L1 negative conditions. Thus, tPD-1 represents a straightforward method for improving antitumor immunity and revealing new targets through PD-L1 positivity.


Assuntos
Antígeno B7-H1/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Evasão Tumoral/imunologia , Animais , Adesão Celular , Engenharia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Engenharia Genética , Humanos , Camundongos , Neoplasias/patologia , Receptor de Morte Celular Programada 1/metabolismo , RNA Mensageiro/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncoimmunology ; 10(1): 1936757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235003

RESUMO

T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides. The sequence of these TCRs could be identified and expressed in primary cells. We demonstrated stable expression of all TCRs as well as target-specific functionality when expressing T cells were co-incubated with target cells presenting KRAS peptides. In addition, these TCRs were all partially co-receptor independent since they were functional in both CD4 and CD8 T cells, thus indicating high affinity. Interestingly, we observed that certain TCRs were able to recognize several KRAS mutations in complex with their cognate Human leukocyte antigen (HLA), suggesting that, here, the point mutations were less important for the HLA binding and TCR recognition, whereas others were single-mutation restricted. Finally, we demonstrated that these peptides were indeed processed and presented, since HLA-matched antigen presenting cells exogenously loaded with KRAS proteins were recognized by TCR-transduced T cells. Taken together, our data demonstrate that KRAS mutations are immunogenic for CD4 T cells and are interesting targets for TCR-based cancer immunotherapy.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Antígenos de Neoplasias , Antígenos HLA , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/genética
8.
Front Immunol ; 12: 682492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290704

RESUMO

Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth. Herein, we review tumor telomerase biology that may affect the efficacy of therapeutic vaccination and provide insights on optimal vaccine design and treatment combinations. Tumor types possessing mechanisms of increased telomerase expression combined with an immune permissive tumor microenvironment are expected to increase the therapeutic potential of telomerase-targeting cancer vaccines. Regardless, rational treatment combinations, such as checkpoint inhibitors, are likely necessary to bring out the true clinical potential of TCVs.


Assuntos
Biomarcadores Tumorais , Vacinas Anticâncer/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Telomerase/genética , Telomerase/metabolismo , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Neoplasias/terapia , Pesquisa , Microambiente Tumoral/imunologia , Vacinação
9.
Front Immunol ; 12: 663865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046035

RESUMO

Background: Ipilimumab improves survival for patients with metastatic malignant melanoma. Combining a therapeutic cancer vaccine with ipilimumab may increase efficacy by providing enhanced anti-tumor immune responses. UV1 consists of three synthetic long peptides from human telomerase reverse transcriptase (hTERT). These peptides comprise epitopes recognized by T cells from cancer patients experiencing long-term survival following treatment with a first-generation hTERT vaccine, and generate long-lasting immune responses in cancer patients when used as monotherapy. The objective of this trial was to investigate the safety and efficacy of combining UV1 with ipilimumab in metastatic melanoma. Patients and Methods: In this phase I/IIa, single center trial [NCT02275416], patients with metastatic melanoma received repeated UV1 vaccinations, with GM-CSF as an adjuvant, in combination with ipilimumab. Patients were evaluated for safety, efficacy and immune response. Immune responses against vaccine peptides were monitored in peripheral blood by measuring antigen-specific proliferation and IFN-γ production. Results: Twelve patients were recruited. Adverse events were mainly diarrhea, injection site reaction, pruritus, rash, nausea and fatigue. Ten patients showed a Th1 immune response to UV1 peptides, occurring early and after few vaccinations. Three patients obtained a partial response and one patient a complete response. Overall survival was 50% at 5 years. Conclusion: Treatment was well tolerated. The rapid expansion of UV1-specific Th1 cells in the majority of patients indicates synergy between UV1 vaccine and CTLA-4 blockade. This may have translated into clinical benefit, encouraging the combination of UV1 vaccination with standard of care treatment regimes containing ipilimumab/CTLA-4 blocking antibodies.


Assuntos
Vacinas Anticâncer/imunologia , Ipilimumab/uso terapêutico , Melanoma/terapia , Telomerase/antagonistas & inibidores , Adulto , Idoso , Biomarcadores , Biópsia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Terapia Combinada , Feminino , Seguimentos , Humanos , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Telomerase/imunologia , Resultado do Tratamento
10.
Mol Ther ; 29(3): 1199-1213, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212301

RESUMO

T cell receptor (TCR)-engineered T cell therapy is a promising cancer treatment approach. Human telomerase reverse transcriptase (hTERT) is overexpressed in the majority of tumors and a potential target for adoptive cell therapy. We isolated a novel hTERT-specific TCR sequence, named Radium-4, from a clinically responding pancreatic cancer patient vaccinated with a long hTERT peptide. Radium-4 TCR-redirected primary CD4+ and CD8+ T cells demonstrated in vitro efficacy, producing inflammatory cytokines and killing hTERT+ melanoma cells in both 2D and 3D settings, as well as malignant, patient-derived ascites cells. Importantly, T cells expressing Radium-4 TCR displayed no toxicity against bone marrow stem cells or mature hematopoietic cells. Notably, Radium-4 TCR+ T cells also significantly reduced tumor growth and improved survival in a xenograft mouse model. Since hTERT is a universal cancer antigen, and the very frequently expressed HLA class II molecules presenting the hTERT peptide to this TCR provide a very high (>75%) population coverage, this TCR represents an attractive candidate for immunotherapy of solid tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoterapia/métodos , Melanoma/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Telomerase/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Immunol ; 11: 572172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324397

RESUMO

Human telomerase reverse transcriptase (hTERT) is a target antigen for cancer immunotherapy in patients with non-small cell lung cancer (NSCLC). We have tested a novel hTERT vaccine, UV1, designed to give high population coverage. UV1 is composed of three synthetic long peptides containing multiple epitopes identified by epitope spreading data from long-term survivors from previous hTERT vaccination trials. Eighteen non-HLA-typed patients with stage III/IV NSCLC with no evidence of progression after prior treatments, were enrolled in a phase I dose-escalation study of UV1 vaccination with GM-CSF as adjuvant, evaluating safety, immune response, and long-term clinical outcome. Treatment with UV1 was well tolerated with no serious adverse events observed. Seventeen patients were evaluable for tumor response; 15 patients had stable disease as best response. The median progression free survival (PFS) was 10.7 months, and the median overall survival (OS) was 28.2 months. The OS at 4 years was 39% (7/18). Five patients are alive (median survival 5.6 years), and none of these are known to have received checkpoint therapy after vaccination. UV1 induced specific T-cell responses in the majority (67%) of patients. Immune responses were dynamic and long lasting. Both immune response (IR) and OS were dose related. More patients in the highest UV1 dosage group (700 µg) developed IRs compared to the other groups, and the IRs were stronger and occurred earlier. Patients in this group had a 4-year OS of 83%. The safety and clinical outcome data favor 700 µg as the preferred UV1 dose in this patient population. These results provide a rationale for further clinical studies in NSCLC with UV1 vaccination in combination with immune checkpoint blockade. Clinical Trial Registration: https://www.clinicaltrials.gov, identifier NCT0178909.


Assuntos
Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Epitopos de Linfócito T/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Linfócitos T/imunologia , Telomerase/imunologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Neoplasias Pulmonares/mortalidade , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Análise de Sobrevida , Resultado do Tratamento , Vacinas de Subunidades Antigênicas
12.
Toxicol Rep ; 7: 768-771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632359

RESUMO

During the current COVID-19 pandemic, a need for evaluation of already available drugs for treatment of the disease is crucial. Hereby, based on literature review from the current pandemic and previous outbreaks with corona viruses we analyze the impact of the virus infection on cell stress responses and redox balance. High levels of mortality are noticed in elderly individuals infected with SARS-CoV2 and during the previous SARS-CoV1 outbreak. Elderly individuals maintain a chronic low level of inflammation which is associated with oxidative stress and inflammatory cytokine production, a condition that increases the severity of viral infections in this population. Coronavirus infections can lead to alterations of redox balance in infected cells through modulation of NAD + biosynthesis, PARP function along with altering proteasome and mitochondrial function in the cell thereby leading to enhanced cell stress responses which further exacerbate inflammation. ROS production can increase IL-6 production and lipid peroxidation resulting in cell damage. Therefore, early treatment with anti-oxidants such as NAC during COVID-19 can be a way to bypass the excessive inflammation and cell damage that lead to severe infection, thus early NAC as intervention should be evaluated in a clinical trial setting.

13.
Cancer Immunol Immunother ; 69(1): 159-161, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776597

RESUMO

The original version of this article unfortunately included a mistake in Fig. 2b where the images of mice in the tumour control group (right), day 30 (bottom) should be removed as the wrong images (duplicate of day 17) were inserted by mistake. At this time point the tumour control mice were no longer alive and the images were replaced by black areas.

14.
Cancer Immunol Immunother ; 68(8): 1235-1243, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31214732

RESUMO

Off-target toxicity due to the expression of target antigens in normal tissue or TCR cross-reactivity represents a major risk when using T cell receptor (TCR)-engineered T cells for treatment of solid tumours. Due to the inherent cross-reactivity of TCRs it is difficult to accurately predict their target recognition pre-clinically. It has become evident that direct testing in a human being represents the best evaluation of the risks. There is, therefore, a clear unmet need for assessing the safety of a therapeutic TCR in a more controllable manner than by the injection of permanently modified cellular products. Using transiently modified T cells combined with dose escalation has already been shown feasible for chimeric antigen receptor (CAR)-engineered T cells, but nothing is yet reported for TCR. We performed a preclinical evaluation of a therapeutic TCR transiently expressed in T cells by mRNA electroporation. We analyzed if the construct was active in vitro, how long it was detectable for and if this expression format was adapted to in vivo efficacy assessment. Our data demonstrate the potential of mRNA engineered T cells, although less powerful than permanent redirection, to induce a significant response. Thus, these findings support the development of mRNA based TCR-therapy strategies as a feasible and efficacious method for evaluating TCR safety and efficacy in first-in-man testing.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias Colorretais/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Animais , Neoplasias Colorretais/imunologia , Reações Cruzadas , Citotoxicidade Imunológica , Eletroporação , Células HCT116 , Humanos , Camundongos , Camundongos SCID , Neoplasias Experimentais , RNA Mensageiro/genética , Receptores de Antígenos Quiméricos/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncoimmunology ; 8(4): e1565236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906659

RESUMO

Adoptive cell therapy (ACT) with retargeted T cells has produced remarkable clinical responses against cancer, but also serious toxicity. Telomerase is overexpressed in most cancers, but also expressed in some normal cells, raising safety concerns. We hypothesize that ACT with T-helper cell receptors may overcome tumour tolerance, mobilize host immune cells and induce epitope spreading, with limited toxicity. From long term survivors after cancer vaccination, we have isolated telomerase-specific T cell receptors (TCRs) from T-helper cells. Herein, we report the development of transient retargeting of T cells with mRNA-based TCRs. This strategy allows for safer clinical testing and meaningful dose escalation. DP4 is the most common HLA molecule. We cloned two telomerase-specific, DP4-restricted TCRs into the mRNA expression vector pCIpA102, together with the sorter/marker/suicide gene RQR8. Donor T cells were electroporated with mRNA encoding TCR_RQR8. The results showed that both TCR_RQR8 constructs were expressed in >90% of T cells. The transfected T cells specifically recognized the relevant peptide, as well as naturally processed epitopes from a 177aa telomerase protein fragment, and remained functional for six days. A polyfunctional and Th1-like cytokine profile was observed. The TCRs were functional in both CD4+and CD8+recipient T cells, even though DP4-restricted. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired telomerase-specificity and functionality. Preclinical experiments may provide limited information on the efficacy and toxicity of T-helper TCRs, as these mobilize the host immune system. We therefore intend to use the mRNA-based TCRs for a first-in-man trial.

16.
Oncoimmunology ; 8(3): 1558663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723591

RESUMO

Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4+ and CD8+ T cells from a naïve population. Taken together our study demonstrates that CLIP peptide replaced Ii constructs fulfill some of the major requirements for an efficient vector for cancer vaccination.

17.
EBioMedicine ; 40: 106-117, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30665853

RESUMO

BACKGROUND: Adoptive T-cell transfer of therapeutic TCR holds great promise to specifically kill cancer cells, but relies on modifying the patient's own T cells ex vivo before injection. The manufacturing of T cells in a tailor-made setting is a long and expensive process which could be resolved by the use of universal cells. Currently, only the Natural Killer (NK) cell line NK-92 is FDA approved for universal use. In order to expand their recognition ability, they were equipped with Chimeric Antigen Receptors (CARs). However, unlike CARs, T-cell receptors (TCRs) can recognize all cellular proteins, which expand NK-92 recognition to the whole proteome. METHODS: We herein genetically engineered NK-92 to express the CD3 signaling complex, and showed that it rendered them able to express a functional TCR. Functional assays and in vivo efficacy were used to validate these cells. FINDINGS: This is the first demonstration that a non-T cell can exploit TCRs. This TCR-redirected cell line, termed TCR-NK-92, mimicked primary T cells phenotypically, metabolically and functionally, but retained its NK cell effector functions. Our results demonstrate a unique manner to indefinitely produce TCR-redirected lymphocytes at lower cost and with similar therapeutic efficacy as redirected T cells. INTERPRETATION: These results suggest that an NK cell line could be the basis for an off-the-shelf TCR-based cancer immunotherapy solution. FUND: This work was supported by the Research Council of Norway (#254817), South-Eastern Norway Regional Health Authority (#14/00500-79), by OUS-Radiumhospitalet (Gene Therapy program) and the department of Oncology at the University of Lausanne.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Respiração Celular , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Metabolismo Energético , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Mitocôndrias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 7(1): 10713, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878363

RESUMO

Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation. However, TCRs depend on heavy signalling machinery only present in T cells which restricts the type of eligible therapeutic cells. Hence, an introduced therapeutic TCR will compete with the endogenous TCR for the signalling proteins and carries the potential risk of mixed dimer formation giving rise to a new TCR with unpredictable specificity. We have fused a soluble TCR construct to a CAR-signalling tail and named the final product TCR-CAR. We here show that, if expressed, the TCR-CAR conserved the specificity and the functionality of the original TCR. In addition, we demonstrate that TCR-CAR redirection was not restricted to T cells. Indeed, after transduction, the NK cell line NK-92 became TCR positive and reacted against pMHC target. This opens therapeutic avenues combing the killing efficiency of NK cells with the diversified target recognition of TCRs.


Assuntos
Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Citometria de Fluxo , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos Quiméricos/química , Proteínas Recombinantes de Fusão , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética
19.
Oncoimmunology ; 6(4): e1302631, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507809

RESUMO

T-cell receptor (TCR) transfer is an attractive strategy to increase the number of cancer-specific T cells in adoptive cell therapy. However, recent clinical and pre-clinical findings indicate that careful consideration of the target antigen is required to limit the risk of off-target toxicity. Directing T cells against mutated proteins such as frequently occurring frameshift mutations may thus be a safer alternative to tumor-associated self-antigens. Furthermore, such frameshift mutations result in novel polypeptides allowing selection of TCRs from the non-tolerant T-cell repertoire circumventing the problem of low affinity TCRs due to central tolerance. The transforming growth factor ß Receptor II frameshift mutation (TGFßRIImut) is found in Lynch syndrome cancer patients and in approximately 15% of sporadic colorectal and gastric cancers displaying microsatellite instability (MSI). The -1A mutation within a stretch of 10 adenine bases (nucleotides 709-718) of the TGFßRII gene gives rise to immunogenic peptides previously used for vaccination of MSI+ colorectal cancer patients in a Phase I clinical trial. From a clinically responding patient, we isolated a cytotoxic T lymphocyte (CTL) clone showing a restriction for HLA-A2 in complex with TGFßRIImut peptide. Its TCR was identified and shown to redirect T cells against colon carcinoma cell lines harboring the frameshift mutation. Finally, T cells transduced with the HLA-A2-restricted TGFßRIImut-specific TCR were demonstrated to significantly reduce the growth of colorectal cancer and enhance survival in a NOD/SCID xenograft mouse model.

20.
Cancer Immunol Immunother ; 66(7): 891-901, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28391357

RESUMO

In newly diagnosed metastatic hormone-naive prostate cancer (mPC), telomerase-based immunotherapy with the novel hTERT peptide vaccine UV1 can induce immune responses with potential clinical benefit. This phase I dose escalation study of UV1 evaluated safety, immune response, effects on prostate-specific antigen (PSA) levels, and preliminary clinical outcome. Twenty-two patients with newly diagnosed metastatic hormone-naïve PC (mPC) were enrolled; all had started androgen deprivation therapy and had no visceral metastases. Bone metastases were present in 17 (77%) patients and 16 (73%) patients had affected lymph nodes. Three dose levels of UV1 were given as intradermal injections combined with GM-CSF (Leukine®). Twenty-one patients in the intention-to-treat population (95%) received conformal radiotherapy. Adverse events reported were predominantly grade 1, most frequently injection site pruritus (86.4%). Serious adverse events considered possibly related to UV1 and/or GM-CSF included anaphylactic reaction in two patients and thrombocytopenia in one patient. Immune responses against UV1 peptides were confirmed in 18/21 evaluable patients (85.7%), PSA declined to <0.5 ng/mL in 14 (64%) patients and in ten patients (45%) no evidence of persisting tumour was seen on MRI in the prostatic gland. At the end of the nine-month reporting period for the study, 17 patients had clinically stable disease. Treatment with UV1 and GM-CSF gave few adverse events and induced specific immune responses in a large proportion of patients unselected for HLA type. The intermediate dose of 0.3 mg UV1 resulted in the highest proportion of, and most rapid UV1-specific immune responses with an acceptable safety profile. These results warrant further clinical studies in mPC.


Assuntos
Adenocarcinoma/terapia , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Fragmentos de Peptídeos/uso terapêutico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/terapia , Telomerase/uso terapêutico , Adenocarcinoma/sangue , Adenocarcinoma/imunologia , Adenocarcinoma/secundário , Idoso , Neoplasias Ósseas/secundário , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Estudos de Coortes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Imunidade Ativa/imunologia , Metástase Linfática , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/imunologia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Telomerase/efeitos adversos , Telomerase/imunologia , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...