Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36866529

RESUMO

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project.


Assuntos
Bases de Dados Genéticas , Proteínas , Ontologia Genética , Proteínas/genética , Anotação de Sequência Molecular , Biologia Computacional
2.
Front Physiol ; 13: 815874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295568

RESUMO

Knowledge of biological organisms at the molecular level that has been gathered is now organized into databases, often within ontological frameworks. To enable computational comparisons of annotations across different genomes and organisms, controlled vocabularies have been essential, as is the case in the functional annotation classifications used for bacteria, such as MultiFun and the more widely used Gene Ontology. The function of individual gene products as well as the processes in which collections of them participate constitute a wealth of classes that describe the biological role of gene products in a large number of organisms in the three kingdoms of life. In this contribution, we highlight from a qualitative perspective some limitations of these frameworks and discuss challenges that need to be addressed to bridge the gap between annotation as currently captured by ontologies and databases and our understanding of the basic principles in the organization and functioning of organisms; we illustrate these challenges with some examples in bacteria. We hope that raising awareness of these issues will encourage users of Gene Ontology and similar ontologies to be careful about data interpretation and lead to improved data representation.

3.
Biochim Biophys Acta Gene Regul Mech ; 1865(1): 194768, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757206

RESUMO

As computational modeling becomes more essential to analyze and understand biological regulatory mechanisms, governance of the many databases and knowledge bases that support this domain is crucial to guarantee reliability and interoperability of resources. To address this, the COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various steps in the knowledge management process that focuses on understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to standardize and update existing knowledge management workflows and involve end-users in the process of designing the Gene Regulation Knowledge Commons (GRKC). Here the GREEKC consortium describes its main achievements in improving this GRKC.


Assuntos
Regulação da Expressão Gênica , Reprodutibilidade dos Testes
4.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850135

RESUMO

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , DNA/genética , DNA/metabolismo , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34673265

RESUMO

To control gene transcription, DNA-binding transcription factors recognise specific sequence motifs in gene regulatory regions. A complete and reliable GO annotation of all DNA-binding transcription factors is key to investigating the delicate balance of gene regulation in response to environmental and developmental stimuli. The need for such information is demonstrated by the many lists of transcription factors that have been produced over the past decade. The COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) Consortium brought together experts in the field of transcription with the aim of providing high quality and interoperable gene regulatory data. The Gene Ontology (GO) Consortium provides strict definitions for gene product function, including factors that regulate transcription. The collaboration between the GREEKC and GO Consortia has enabled the application of those definitions to produce a new curated catalogue of over 1400 human DNA-binding transcription factors, that can be accessed at https://www.ebi.ac.uk/QuickGO/targetset/dbTF. This catalogue has facilitated an improvement in the GO annotation of human DNA-binding transcription factors and led to the GO annotation of almost sixty thousand DNA-binding transcription factors in over a hundred species. Thus, this work will aid researchers investigating the regulation of transcription in both biomedical and basic science.


Assuntos
DNA/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Fatores de Transcrição/classificação , Bases de Dados Genéticas , Humanos , Fatores de Transcrição/metabolismo
6.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710644

RESUMO

Gene regulation computational research requires handling and integrating large amounts of heterogeneous data. The Gene Ontology has demonstrated that ontologies play a fundamental role in biological data interoperability and integration. Ontologies help to express data and knowledge in a machine processable way, which enables complex querying and advanced exploitation of distributed data. Contributing to improve data interoperability in gene regulation is a major objective of the GREEKC Consortium, which aims to develop a standardized gene regulation knowledge commons. GREEKC proposes the use of ontologies and semantic tools for developing interoperable gene regulation knowledge models, which should support data annotation. In this work, we study how such knowledge models can be generated from cartoons of gene regulation scenarios. The proposed method consists of generating descriptions in natural language of the cartoons; extracting the entities from the texts; finding those entities in existing ontologies to reuse as much content as possible, especially from well known and maintained ontologies such as the Gene Ontology, the Sequence Ontology, the Relations Ontology and ChEBI; and implementation of the knowledge models. The models have been implemented using Protégé, a general ontology editor, and Noctua, the tool developed by the Gene Ontology Consortium for the development of causal activity models to capture more comprehensive annotations of genes and link their activities in a causal framework for Gene Ontology Annotations. We applied the method to two gene regulation scenarios and illustrate how to apply the models generated to support the annotation of data from research articles.


Assuntos
Regulação da Expressão Gênica , Modelos Genéticos , Curadoria de Dados , Ontologia Genética , Anotação de Sequência Molecular
7.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34461313

RESUMO

Transcription plays a central role in defining the identity and functionalities of cells, as well as in their responses to changes in the cellular environment. The Gene Ontology (GO) provides a rigorously defined set of concepts that describe the functions of gene products. A GO annotation is a statement about the function of a particular gene product, represented as an association between a gene product and the biological concept a GO term defines. Critically, each GO annotation is based on traceable scientific evidence. Here, we describe the different GO terms that are associated with proteins involved in transcription and its regulation, focusing on the standard of evidence required to support these associations. This article is intended to help users of GO annotations understand how to interpret the annotations and can contribute to the consistency of GO annotations. We distinguish between three classes of activities involved in transcription or directly regulating it - general transcription factors, DNA-binding transcription factors, and transcription co-regulators.


Assuntos
Bases de Dados Genéticas/estatística & dados numéricos , Regulação da Expressão Gênica , Ontologia Genética/estatística & dados numéricos , Fatores de Transcrição/classificação , Biologia Computacional/métodos , Anotação de Sequência Molecular/estatística & dados numéricos
8.
Bioinformatics ; 36(24): 5712-5718, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32637990

RESUMO

MOTIVATION: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells. These causal interactions and the biological processes they enable (e.g. gene regulation) need to be described with a careful appreciation of the underlying molecular reactions. A proper description of this information enables archiving, sharing and reuse by humans and for automated computational processing. Various representations of causal relationships between biological components are currently used in a variety of resources. RESULTS: Here, we propose a checklist that accommodates current representations, called the Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). This checklist defines both the required core information, as well as a comprehensive set of other contextual details valuable to the end user and relevant for reusing and reproducing causal molecular interaction information. The MI2CAST checklist can be used as reporting guidelines when annotating and curating causal statements, while fostering uniformity and interoperability of the data across resources. AVAILABILITY AND IMPLEMENTATION: The checklist together with examples is accessible at https://github.com/MI2CAST/MI2CAST. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Causalidade , Humanos
9.
Open Biol ; 10(9): 200149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32875947

RESUMO

Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes probably reflects errors in literature curation, ontology structure or automated annotation pipelines. We have developed an annotation quality control workflow that uses rules based on mutually exclusive processes to detect annotation errors, based on and validated by case studies including the three we present here: fission yeast protein-coding gene annotations over time; annotations for cohesin complex subunits in human and model species; and annotations using a selected set of GO biological process terms in human and five model species. For each case study, we reviewed available GO annotations, identified pairs of biological processes which are unlikely to be correctly co-annotated to the same gene products (e.g. amino acid metabolism and cytokinesis), and traced erroneous annotations to their sources. To date we have generated 107 quality control rules, and corrected 289 manual annotations in eukaryotes and over 52 700 automatically propagated annotations across all taxa.


Assuntos
Biologia Computacional/métodos , Ontologia Genética , Anotação de Sequência Molecular , Bases de Dados Genéticas , Evolução Molecular , Genoma Fúngico , Genômica/métodos , Controle de Qualidade , Schizosaccharomyces/genética , Navegador , Fluxo de Trabalho
10.
Bioinformatics ; 36(10): 3244-3245, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31985787

RESUMO

SUMMARY: The Feature-Viewer is a lightweight library for the visualization of biological data mapped to a protein or nucleotide sequence. It is designed for ease of use while allowing for a full customization. The library is already used by several biological data resources and allows intuitive visual mapping of a full spectra of sequence features for different usages. AVAILABILITY AND IMPLEMENTATION: The Feature-Viewer is open source, compatible with state-of-the-art development technologies and responsive, also for mobile viewing. Documentation and usage examples are available online.


Assuntos
Computadores , Software
11.
Nucleic Acids Res ; 48(D1): D328-D334, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31724716

RESUMO

The neXtProt knowledgebase (https://www.nextprot.org) is an integrative resource providing both data on human protein and the tools to explore these. In order to provide comprehensive and up-to-date data, we evaluate and add new data sets. We describe the incorporation of three new data sets that provide expression, function, protein-protein binary interaction, post-translational modifications (PTM) and variant information. New SPARQL query examples illustrating uses of the new data were added. neXtProt has continued to develop tools for proteomics. We have improved the peptide uniqueness checker and have implemented a new protein digestion tool. Together, these tools make it possible to determine which proteases can be used to identify trypsin-resistant proteins by mass spectrometry. In terms of usability, we have finished revamping our web interface and completely rewritten our API. Our SPARQL endpoint now supports federated queries. All the neXtProt data are available via our user interface, API, SPARQL endpoint and FTP site, including the new PEFF 1.0 format files. Finally, the data on our FTP site is now CC BY 4.0 to promote its reuse.


Assuntos
Bases de Dados de Proteínas , Bases de Conhecimento , Humanos , Internet , Espectrometria de Massas , Peptídeos/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Análise de Sequência de RNA , Software , Tripsina , Interface Usuário-Computador
13.
Neuron ; 103(2): 217-234.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31171447

RESUMO

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).


Assuntos
Encéfalo/citologia , Ontologia Genética , Proteômica , Software , Sinapses/fisiologia , Animais , Encéfalo/fisiologia , Bases de Dados Genéticas , Humanos , Bases de Conhecimento , Potenciais Sinápticos/fisiologia , Sinaptossomos
14.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715275

RESUMO

High-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology. To address this, representatives from annotation teams within the GO Consortium reviewed high-throughput data annotation practices. We present an annotation framework for high-throughput studies that will facilitate good standards in GO curation and, through the use of new high-throughput evidence codes, increase the visibility of these annotations to the research community.


Assuntos
Bases de Dados Genéticas , Ontologia Genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
15.
Nucleic Acids Res ; 47(D1): D1186-D1194, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407590

RESUMO

The Evidence and Conclusion Ontology (ECO) contains terms (classes) that describe types of evidence and assertion methods. ECO terms are used in the process of biocuration to capture the evidence that supports biological assertions (e.g. gene product X has function Y as supported by evidence Z). Capture of this information allows tracking of annotation provenance, establishment of quality control measures and query of evidence. ECO contains over 1500 terms and is in use by many leading biological resources including the Gene Ontology, UniProt and several model organism databases. ECO is continually being expanded and revised based on the needs of the biocuration community. The ontology is freely available for download from GitHub (https://github.com/evidenceontology/) or the project's website (http://evidenceontology.org/). Users can request new terms or changes to existing terms through the project's GitHub site. ECO is released into the public domain under CC0 1.0 Universal.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Proteínas/genética , Animais , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Proteínas/metabolismo , Análise de Sequência de Proteína , Interface Usuário-Computador
16.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576492

RESUMO

The development of efficient text-mining tools promises to boost the curation workflow by significantly reducing the time needed to process the literature into biological databases. We have developed a curation support tool, neXtA5, that provides a search engine coupled with an annotation system directly integrated into a biocuration workflow. neXtA5 assists curation with modules optimized for the thevarious curation tasks: document triage, entity recognition and information extraction.Here, we describe the evaluation of neXtA5 by expert curators. We first assessed the annotations of two independent curators to provide a baseline for comparison. To evaluate the performance of neXtA5, we submitted requests and compared the neXtA5 results with the manual curation. The analysis focuses on the usability of neXtA5 to support the curation of two types of data: biological processes (BPs) and diseases (Ds). We evaluated the relevance of the papers proposed as well as the recall and precision of the suggested annotations.The evaluation of document triage by neXtA5 precision showed that both curators agree with neXtA5 for 67 (BP) and 63% (D) of abstracts, while curators agree on accepting or rejecting an abstract ~80% of the time. Hence, the precision of the triage system is satisfactory.For concept extraction, curators approved 35 (BP) and 25% (D) of the neXtA5 annotations. Conversely, neXtA5 successfully annotated up to 36 (BP) and 68% (D) of the terms identified by curators. The user feedback obtained in these tests highlighted the need for improvement in the ranking function of neXtA5 annotations. Therefore, we transformed the information extraction component into an annotation ranking system. This improvement results in a top precision (precision at first rank) of 59 (D) and 63% (BP). These results suggest that when considering only the first extracted entity, the current system achieves a precision comparable with expert biocurators.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Bases de Dados Factuais , Software , Humanos
17.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329035

RESUMO

The text-mining services for kinome curation track, part of BioCreative VI, proposed a competition to assess the effectiveness of text mining to perform literature triage. The track has exploited an unpublished curated data set from the neXtProt database. This data set contained comprehensive annotations for 300 human protein kinases. For a given protein and a given curation axis [diseases or gene ontology (GO) biological processes], participants' systems had to identify and rank relevant articles in a collection of 5.2 M MEDLINE citations (task 1) or 530 000 full-text articles (task 2). Explored strategies comprised named-entity recognition and machine-learning frameworks. For that latter approach, participants developed methods to derive a set of negative instances, as the databases typically do not store articles that were judged as irrelevant by curators. The supervised approaches proposed by the participating groups achieved significant improvements compared to the baseline established in a previous study and compared to a basic PubMed search.


Assuntos
Mineração de Dados , Proteínas Quinases/metabolismo , Bases de Dados Factuais , Humanos , Publicações Periódicas como Assunto
18.
Hum Genomics ; 12(1): 36, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996917

RESUMO

BACKGROUND: Germline pathogenic variants in the breast cancer type 1 susceptibility gene BRCA1 are associated with a 60% lifetime risk for breast and ovarian cancer. This overall risk estimate is for all BRCA1 variants; obviously, not all variants confer the same risk of developing a disease. In cancer patients, loss of BRCA1 function in tumor tissue has been associated with an increased sensitivity to platinum agents and to poly-(ADP-ribose) polymerase (PARP) inhibitors. For clinical management of both at-risk individuals and cancer patients, it would be important that each identified genetic variant be associated with clinical significance. Unfortunately for the vast majority of variants, the clinical impact is unknown. The availability of results from studies assessing the impact of variants on protein function may provide insight of crucial importance. RESULTS AND CONCLUSION: We have collected, curated, and structured the molecular and cellular phenotypic impact of 3654 distinct BRCA1 variants. The data was modeled in triple format, using the variant as a subject, the studied function as the object, and a predicate describing the relation between the two. Each annotation is supported by a fully traceable evidence. The data was captured using standard ontologies to ensure consistency, and enhance searchability and interoperability. We have assessed the extent to which functional defects at the molecular and cellular levels correlate with the clinical interpretation of variants by ClinVar submitters. Approximately 30% of the ClinVar BRCA1 missense variants have some molecular or cellular assay available in the literature. Pathogenic variants (as assigned by ClinVar) have at least some significant functional defect in 94% of testable cases. For benign variants, 77% of ClinVar benign variants, for which neXtProt Cancer variant portal has data, shows either no or mild experimental functional defects. While this does not provide evidence for clinical interpretation of variants, it may provide some guidance for variants of unknown significance, in the absence of more reliable data. The neXtProt Cancer variant portal ( https://www.nextprot.org/portals/breast-cancer ) contains over 6300 observations at the molecular and/or cellular level for BRCA1 variants.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Adulto , Idoso , Proteína BRCA1/química , Neoplasias da Mama/patologia , Biologia Computacional , Feminino , Variação Genética , Mutação em Linhagem Germinativa/genética , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Conformação Proteica
19.
Sci Rep ; 8(1): 6518, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695735

RESUMO

Many bioinformatics resources with unique perspectives on the protein landscape are currently available. However, generating new knowledge from these resources requires interoperable workflows that support cross-resource queries. In this study, we employ federated queries linking information from the Protein Kinase Ontology, iPTMnet, Protein Ontology, neXtProt, and the Mouse Genome Informatics to identify key knowledge gaps in the functional coverage of the human kinome and prioritize understudied kinases, cancer variants and post-translational modifications (PTMs) for functional studies. We identify 32 functional domains enriched in cancer variants and PTMs and generate mechanistic hypotheses on overlapping variant and PTM sites by aggregating information at the residue, protein, pathway and species level from these resources. We experimentally test the hypothesis that S768 phosphorylation in the C-helix of EGFR is inhibitory by showing that oncogenic variants altering S768 phosphorylation increase basal EGFR activity. In contrast, oncogenic variants altering conserved phosphorylation sites in the 'hydrophobic motif' of PKCßII (S660F and S660C) are loss-of-function in that they reduce kinase activity and enhance membrane translocation. Our studies provide a framework for integrative, consistent, and reproducible annotation of the cancer kinomes.


Assuntos
Mutação/genética , Neoplasias/genética , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas/genética , Animais , Células CHO , Células COS , Linhagem Celular , Chlorocebus aethiops , Biologia Computacional/métodos , Cricetulus , Ontologia Genética , Variação Genética/genética , Humanos , Camundongos , Fosforilação/genética
20.
Cancers (Basel) ; 10(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494549

RESUMO

Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...