Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 12(1): 19, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866998

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 200 SACS mutations have been identified. Most mutations lead to a complete loss of a sacsin, a large 520 kD protein, although some missense mutations are associated with low levels of sacsin expression. We previously showed that Sacs knock-out mice demonstrate early-onset ataxic phenotype with neurofilament bundling in many neuronal populations. To determine if the preservation of some mutated sacsin protein resulted in the same cellular and behavioral alterations, we generated mice expressing an R272C missense mutation, a homozygote mutation found in some affected patients. Though SacsR272C mice express 21% of wild type brain sacsin and sacsin is found in many neurons, they display similar abnormalities to Sacs knock-out mice, including the development of an ataxic phenotype, reduced Purkinje cell firing rates, and somatodendritic neurofilament bundles in Purkinje cells and other neurons. Together our results support that Sacs missense mutation largely lead to loss of sacsin function.


Assuntos
Ataxia/genética , Ataxia/fisiopatologia , Proteínas de Choque Térmico/genética , Mutação de Sentido Incorreto/genética , Potenciais de Ação , Animais , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Dendritos/metabolismo , Marcação de Genes , Proteínas de Choque Térmico/metabolismo , Homozigoto , Humanos , Filamentos Intermediários/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora , Debilidade Muscular/patologia , Fenótipo , Células de Purkinje/metabolismo , Células de Purkinje/patologia
2.
Sci Signal ; 9(421): ra32, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27025876

RESUMO

HSN2is a nervous system predominant exon of the gene encoding the kinase WNK1 and is mutated in an autosomal recessive, inherited form of congenital pain insensitivity. The HSN2-containing splice variant is referred to as WNK1/HSN2. We created a knockout mouse specifically lacking theHsn2exon ofWnk1 Although these mice had normal spinal neuron and peripheral sensory neuron morphology and distribution, the mice were less susceptible to hypersensitivity to cold and mechanical stimuli after peripheral nerve injury. In contrast, thermal and mechanical nociceptive responses were similar to control mice in an inflammation-induced pain model. In the nerve injury model of neuropathic pain, WNK1/HSN2 contributed to a maladaptive decrease in the activity of the K(+)-Cl(-)cotransporter KCC2 by increasing its inhibitory phosphorylation at Thr(906)and Thr(1007), resulting in an associated loss of GABA (γ-aminobutyric acid)-mediated inhibition of spinal pain-transmitting nerves. Electrophysiological analysis showed that WNK1/HSN2 shifted the concentration of Cl(-)such that GABA signaling resulted in a less hyperpolarized state (increased neuronal activity) rather than a more hyperpolarized state (decreased neuronal activity) in mouse spinal nerves. Pharmacologically antagonizing WNK activity reduced cold allodynia and mechanical hyperalgesia, decreased KCC2 Thr(906)and Thr(1007)phosphorylation, and restored GABA-mediated inhibition (hyperpolarization) of injured spinal cord lamina II neurons. These data provide mechanistic insight into, and a compelling therapeutic target for treating, neuropathic pain after nerve injury.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Nervos Espinhais/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Éxons , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Neuralgia/genética , Neuralgia/fisiopatologia , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/prevenção & controle , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Nervos Espinhais/patologia , Simportadores/genética , Simportadores/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK , Ácido gama-Aminobutírico/genética , Cotransportadores de K e Cl-
3.
Hum Mol Genet ; 24(3): 727-39, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260547

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 170 SACS mutations have been reported worldwide and are thought to cause loss of function of sacsin, a poorly characterized and massive 520 kDa protein. To establish an animal model and to examine the pathophysiological basis of ARSACS, we generated Sacs knockout (Sacs(-/-)) mice. Null animals displayed an abnormal gait with progressive motor, cerebellar and peripheral nerve dysfunctions highly reminiscent of ARSACS. These clinical features were accompanied by an early onset, progressive loss of cerebellar Purkinje cells followed by spinal motor neuron loss and peripheral neuropathy. Importantly, loss of sacsin function resulted in abnormal accumulation of non-phosphorylated neurofilament (NF) bundles in the somatodendritic regions of vulnerable neuronal populations, a phenotype also observed in an ARSACS brain. Moreover, motor neurons cultured from Sacs(-/-) embryos exhibited a similar NF rearrangement with significant reduction in mitochondrial motility and elongated mitochondria. The data points to alterations in the NF cytoskeleton and defects in mitochondrial dynamics as the underlying pathophysiological basis of ARSACS.


Assuntos
Proteínas de Choque Térmico/genética , Mitocôndrias/patologia , Neurônios Motores/patologia , Espasticidade Muscular/fisiopatologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/congênito , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico/metabolismo , Humanos , Filamentos Intermediários/patologia , Camundongos , Camundongos Knockout , Neurônios Motores/citologia , Espasticidade Muscular/genética , Células de Purkinje/metabolismo , Tratos Piramidais/patologia , Coluna Vertebral/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Técnicas de Cultura de Tecidos
4.
PLoS One ; 8(5): e65294, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724134

RESUMO

Loss-of-function of the potassium-chloride cotransporter 3 (KCC3) causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD) response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF) Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.


Assuntos
Tamanho Celular , Extensões da Superfície Celular/metabolismo , Oócitos/citologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Simportadores/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Tamanho Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Sequência Conservada , Células HeLa , Humanos , Soluções Hipotônicas/farmacologia , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Simportadores/química , Xenopus laevis
5.
PLoS One ; 8(2): e57807, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451271

RESUMO

The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Proteínas Serina-Treonina Quinases/genética , Processamento Alternativo , Animais , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Rim/metabolismo , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor , Sistema Nervoso/metabolismo , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Ratos , Testículo/metabolismo , Timo/metabolismo , Transcriptoma , Proteína Quinase 1 Deficiente de Lisina WNK
6.
J Neurosci ; 32(11): 3865-76, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423107

RESUMO

Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.


Assuntos
Agenesia do Corpo Caloso/genética , Modelos Animais de Doenças , Neuropatia Hereditária Motora e Sensorial/genética , Fenótipo , Simportadores/deficiência , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/patologia , Animais , Feminino , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Simportadores/biossíntese , Simportadores/genética
7.
Proc Natl Acad Sci U S A ; 109(5): 1661-6, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307627

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.


Assuntos
Genes Recessivos , Mitocôndrias/patologia , Espasticidade Muscular/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/congênito , Animais , Células Cultivadas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Humanos , Camundongos , Camundongos Knockout , Espasticidade Muscular/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
8.
Hum Mol Genet ; 21(10): 2211-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22337953

RESUMO

Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.


Assuntos
Drosophila/genética , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Ataxina-3 , Drosophila/metabolismo , Imuno-Histoquímica , Doença de Machado-Joseph/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/química , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transfecção , Expansão das Repetições de Trinucleotídeos
9.
Am J Hum Genet ; 89(2): 219-30, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21820098

RESUMO

Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system.


Assuntos
Axônios/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Cinesinas/genética , Mutação/genética , Vesículas Sinápticas/metabolismo , Afeganistão , Processamento Alternativo/genética , Transporte Biológico , Células Cultivadas , Éxons/genética , Família , Feminino , Técnicas de Silenciamento de Genes , Testes Genéticos , Genoma Humano/genética , Haplótipos/genética , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinesinas/metabolismo , Masculino , Antígenos de Histocompatibilidade Menor , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Linhagem , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
10.
J Biol Chem ; 286(32): 28456-65, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21628467

RESUMO

Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C → T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C → T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.


Assuntos
Agenesia do Corpo Caloso/metabolismo , Substituição de Aminoácidos , Neuropatia Hereditária Motora e Sensorial/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Simportadores/metabolismo , Agenesia do Corpo Caloso/genética , Sequência de Aminoácidos , Animais , Células HeLa , Neuropatia Hereditária Motora e Sensorial/genética , Humanos , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Deleção de Sequência , Simportadores/genética , Xenopus laevis
11.
Ann Neurol ; 70(1): 170-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21710629

RESUMO

Restless legs syndrome (RLS) is a frequent sleep disorder that is linked to disturbed iron homeostasis. Genetic studies identified MEIS1 as an RLS-predisposing gene, where the RLS risk haplotype is associated with decreased MEIS1 mRNA and protein expression. We show here that RNA interference treatment of the MEIS1 worm orthologue increases ferritin expression in Caenorhabditis elegans and that the RLS-associated haplotype leads to increased expression of ferritin and DMT1 in RLS brain tissues. Additionally, human cells cultured under iron-deficient conditions show reduced MEIS1 expression. Our data establish a link between the RLS MEIS1 gene and iron metabolism.


Assuntos
Variação Genética/genética , Proteínas de Homeodomínio/genética , Homeostase , Ferro/metabolismo , Proteínas de Neoplasias/genética , Síndrome das Pernas Inquietas/genética , Síndrome das Pernas Inquietas/metabolismo , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Células HeLa , Homeostase/genética , Humanos , Proteína Meis1 , Fatores de Risco , Fatores de Transcrição
12.
Brain Res ; 1374: 15-26, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21147077

RESUMO

Potassium/Chloride cotransporters are transmembrane proteins that regulate cell volume and control neuronal activity by transporting K(+) and Cl(-) ions across the plasma membrane. Potassium/Chloride cotransporter 3 (KCC3) mutations are responsible for hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe sensory and motor neuropathy. Two major splice variants, KCC3a and KCC3b, were shown to be expressed in adult mouse tissues. Although KCC3a is mainly expressed in the central nervous system (CNS), its specific cellular expression patterns have not been determined. Here, we used an approach combining in situ hybridization and immunohistochemical techniques to determine the cellular expression of KCC3 in the mouse CNS and showed that KCC3 is mainly expressed in neurons, including a subpopulation of interneurons. Finally, we showed that some non-neuronal cells, such as radial glial-like cells in the spinal cord, also express KCC3.


Assuntos
Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Simportadores/biossíntese , Animais , Encéfalo/citologia , Regulação da Expressão Gênica , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/biossíntese
13.
Methods Mol Biol ; 550: 225-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19495707

RESUMO

Fetal programming of adult disease is an area of research that has gained considerable attention. Epidemiological studies suggest that adverse intrauterine environment in fetal life is associated with a higher incidence of hypertension and coronary disease. Several mechanisms could contribute to these diseases and be regulated in a tissue-specific manner. The Na(+)-K(+)-ATPase, a membrane-bound enzyme, maintains the Na(+) and K(+) gradients across the plasma membrane of animal cells and therefore provides a mechanism for cell function regulation. Furthermore, in an in vitro model of cardiac hypertrophy, a decrease in the activity of the tricarboxylic acid (TCA) cycle enzyme, aconitase, was observed. We have shown that in our model of fetal programming, these two enzymes were regulated differently in heart and kidney of adult females.


Assuntos
Aconitato Hidratase/metabolismo , Desenvolvimento Fetal , Rim/enzimologia , Miocárdio/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Western Blotting , Quitina Sintase/metabolismo , Eletroforese em Gel de Poliacrilamida , Retardo do Crescimento Fetal , Modelos Animais , Ratos
14.
Am J Physiol Regul Integr Comp Physiol ; 293(4): R1657-65, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652367

RESUMO

Sodium supplementation given for 1 wk to nonpregnant rats induces changes that are adequate to maintain renal and circulatory homeostasis as well as arterial blood pressure. However, in pregnant rats, proteinuria, fetal growth restriction, and placental oxidative stress are observed. Moreover, the decrease in blood pressure and expansion of circulatory volume, normally associated with pregnancy, are prevented by high-sodium intake. We hypothesized that, in these pregnant rats, a loss of the balance between prooxidation and antioxidation, particularly in kidneys and heart, disturbs the normal course of pregnancy and leads to manifestations such as gestational hypertension. We thus investigated the presence of oxidative/nitrosative stress in heart and kidneys following high-sodium intake in pregnant rats. Markers of this stress [8-isoprostaglandin F(2alpha) (8-iso-PGF(2alpha)) and nitrotyrosine], producer of nitric oxide [nitric oxide synthases (NOSs)], and antioxidants [superoxide dismutase (SOD) and catalase] were measured. Then, molecules (Na(+)-K(+)-ATPase and aconitase) or process [apoptosis (Bax and Bcl-2), inflammation (monocyte chemoattractant protein-1, connective tissue growth factor, and TNF-alpha)] susceptible to free radicals was determined. In kidneys from pregnant rats on 1.8% NaCl-water, NOSs, apoptotic index, and nitrotyrosine expression were increased, whereas Na(+)-K(+)-ATPase mRNA and activity were decreased. In the left cardiac ventricle of these rats, heightened nitrotyrosine, 8-iso-PGF(2alpha), and catalase activity together with reduced endothelial NOS protein expression and SOD and aconitase activities were observed. These findings suggest that oxidative/nitrosative stress in kidney and left cardiac ventricle destabilizes the normal course of pregnancy and could lead to gestational hypertension.


Assuntos
Coração/efeitos dos fármacos , Hipertensão Induzida pela Gravidez/induzido quimicamente , Rim/efeitos dos fármacos , Sódio/farmacologia , Aconitato Hidratase/metabolismo , Animais , Apoptose/fisiologia , Dinoprosta/análogos & derivados , Dinoprosta/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Inflamação/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Gravidez , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...