Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 307(Pt 3): 136043, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35985387

RESUMO

Sunscreens contain ZnO particles used as a UV filter cause adverse effects in the marine environment through the release of this metal into seawater and its bioaccumulation in organisms. A mathematical model using sunscreen colloidal residues, seawater and R. philippinarum clams as differentiated compartments, is proposed in order to interpret both the kinetic pattern and the bioaccumulation of Zn in clams. Two kinetic laboratory experiments were conducted, both with and without clams exposed to sunscreen concentrations from 0 to 200 mg L-1. Both the lowest value of uptake rate coefficient obtained when 5 mg L-1 of sunscreen is added (0.00688 L g-1 d-1) and the highest obtained at sunscreen addition of 100 mg L-1 (0.0670 L g-1 d-1), predict a lower bioavailability of Zn in a complex medium such as the seawater-sunscreen mixtures, in comparison to those studied in the literature. The efflux rate coefficient from clams to seawater increased from 0 to 0.162 d-1 with the sunscreen concentrations. The estimated value of the inlet rate coefficient at all studied concentrations indicates that there is a negligible colloidal Zn uptake rate by clams, probably due to the great stability of the organic colloidal residue. An equilibrium shift to higher values of Zn in water is predicted due to the bioconcentration of Zn in clams. The kinetic model proposed with no constant Zn (aq) concentrations may contribute to a more realistic prediction of the bioaccumulation of Zn from sunscreens in clams.


Assuntos
Bivalves , Poluentes Químicos da Água , Óxido de Zinco , Animais , Bioacumulação , Bivalves/química , Protetores Solares , Água , Zinco
2.
PLoS One ; 15(12): e0243591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326482

RESUMO

Sunscreen is released into the marine environment and is considered toxic for marine life. The current analytical methods for the quantification of sunscreen are mostly specific to individual chemical ingredients and based on complex analytical and instrumental techniques. A simple, selective, rapid, reproducible and low-cost spectrophotometric procedure for the quantification of commercial sunscreen in seawater is described here. The method is based on the inherent properties of these cosmetics to absorb in the wavelength of 300-400 nm. The absorption at 303 nm wavelength correlates with the concentration of most commercial sunscreens. This method allows the determination of sunscreens in the range of 2.5-1500 mg L-1, it requires no sample pretreatment and offers a precision of up to 0.2%. The spectrophotometric method was applied to quantify sunscreen concentrations at an Atlantic Beach with values ranging from 10 to 96.7 mg L-1 in the unfiltered fraction and from the undetectable value to 75.7 mg L-1 in the dissolved fraction. This method is suggested as a tool for sunscreen quantifications in environmental investigations and monitoring programs.


Assuntos
Monitoramento Ambiental/métodos , Água do Mar/análise , Espectrofotometria Ultravioleta/métodos , Protetores Solares/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/economia , Limite de Detecção , Espectrofotometria Ultravioleta/economia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA