Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32584571

RESUMO

The analysis of volatiles is of high relevance for a wide range of applications from environmental air sampling and security screening to potential medical applications. High-resolution mass spectrometry methods offer a particularly wide compound coverage, sensitivity, and selectivity. Online approaches allow direct analysis in real time without the need for sample preparation. For the first time, we systematically compared the analysis of volatile organic compounds with secondary electrospray ionization (SESI) and proton transfer reaction (PTR) high-resolution mass spectrometry. The selected instruments had comparable mass resolving powers with m/Δm ≥ 15000, which is particularly suitable for nontargeted analysis, for example, of exhaled breath. Exhalations from 14 healthy adults were analyzed simultaneously on both instruments. In addition, 97 reference standards from nine chemical classes were analyzed with a liquid evaporation system. Surprisingly, in breath, we found more complementary than overlapping features. A clear mass dependence was observed for each method with the highest number of detected m/z features for SESI in the high mass region (m/z = 150-250) and for PTR in the low mass region (m/z = 50-150). SESI yielded a significantly higher numbers of peaks (828) compared to PTR (491) among a total of 1304 unique breath m/z features. The number of signals observed by both methods was lower than expected (133 features) with 797 unique SESI features and 374 unique PTR features. Hypotheses to explain the observed mass-dependent differences are proposed.

2.
Chem Rev ; 119(19): 10803-10828, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31594311

RESUMO

On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.


Assuntos
Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Sistemas On-Line , Biomarcadores/análise , Sistemas Computacionais , Expiração , Humanos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Transtornos Respiratórios/metabolismo , Análise Espectral/instrumentação , Análise Espectral/métodos , Compostos Orgânicos Voláteis/análise
3.
Anal Chem ; 90(11): 6453-6460, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29767961

RESUMO

The tricarboxylic acid (TCA) cycle is one of the most important metabolic pathway for cellular respiration in aerobic organisms. It provides and collects intermediates for many other interconnecting pathways and acts as a hub connecting metabolism of carbohydrates, fatty acids, and amino acids. Alteration in intracellular levels of its intermediates has been linked with a wide range of illnesses ranging from cancer to cellular necrosis or liver cirrhosis. Therefore, there exists an intrinsic interest in monitoring such metabolites. Our goal in this study was to evaluate whether, at least the most volatile metabolites of the TCA cycle, could be detected in breath in vivo and in real time. We used secondary electrospray ionization coupled with high-resolution mass spectrometry (SESI-HRMS) to conduct this targeted analysis. We enrolled six healthy individuals who provided full exhalations into the SESI-HRMS system at different times during 3 days. For the first time, we observed exhaled compounds that appertain to the TCA cycle: fumaric, succinic, malic, keto-glutaric, oxaloacetic, and aconitic acids. We found high intraindividual variability and a significant overall difference between morning and afternoon levels for malic acid, oxaloacetic acid, and aconitic acid, supporting previous studies suggesting circadian fluctuations of these metabolites in humans. This study provides first evidence that TCA cycle could conveniently be monitored in breath, opening new opportunities to study in vivo this important metabolic pathway.


Assuntos
Testes Respiratórios/métodos , Ciclo do Ácido Cítrico , Espectrometria de Massas por Ionização por Electrospray/métodos , Ácidos Tricarboxílicos/análise , Adulto , Testes Respiratórios/instrumentação , Desenho de Equipamento , Expiração , Feminino , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Ácidos Tricarboxílicos/metabolismo
4.
J Breath Res ; 12(3): 036013, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29555894

RESUMO

We aimed at defining profiles of volatile organic compounds in exhaled breath from patients with cystic fibrosis (CF) using a novel real-time mass spectrometry technique. In this prospective matched case-control study, 30 patients with CF, and 30 healthy control subjects were matched one-to-one according to age, gender, and smoking state. We performed exhaled breath analysis by untargeted secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS). Patients with CF (mean age 26.0 ± 13.0 years) and controls (mean age 27.9 ± 14.0 years) were analyzed using SESI-HRMS. 49 exhaled breath features were found to be altered (p-value < 0.05/q-value < 0.1) in CF patients, in comparison to healthy controls. The two most discriminating features showed a prediction AUROC of 77.1% (95% CI 62.2%-87.8%) with a specificity of 80.0% and a sensitivity of 63.3%. Levels of oxidative stress metabolites such as fatty acids were found to differ significantly between patients with CF and healthy controls. Furthermore, in patients with CF, 11 features correlated with the mucus concentration of Stenotrophomonas maltophilia bacteria. Exhaled breath analysis with SESI-HRMS allows the identification of CF specific compounds in real-time and may trace bacterial strains in affected patients with CF.


Assuntos
Testes Respiratórios/métodos , Sistemas Computacionais , Fibrose Cística/diagnóstico , Expiração , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Fibrose Cística/microbiologia , Feminino , Humanos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Adulto Jovem
5.
J Breath Res ; 11(4): 046004, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28901297

RESUMO

We explore whether real-time breath analysis by high resolution mass spectrometry is suitable to monitor changes at the metabolic level due to inhaling bronchodilator medication. We compared the breath levels of metabolites in a group of patients (n = 50) at baseline and 10 and 30 min after inhalation of 200 µg salbutamol. The same procedure was performed with a group of controls (n = 48) inhaling a placebo spray. A total of 131 mass spectral features were significantly altered as a result of inhaling medication, but not after inhaling placebo. We found that homologous series of chemical classes correlated strongly with each other, strengthening the notion that certain biochemical processes can be monitored. For example, a series of fatty acids was found to be increased after salbutamol intake, suggesting lipolysis stimulation. Peaks corresponding to salbutamol, its main metabolite salbutamol-4-O-sulfate and formoterol were found to be generally increased in patients inhaling the drugs on an as-needed basis, as compared to non-medicated volunteers. Overall, these results suggest such real-time breath analysis is a useful tool for non-invasive therapeutic drug monitoring.


Assuntos
Albuterol/administração & dosagem , Albuterol/metabolismo , Testes Respiratórios/métodos , Expiração , Administração por Inalação , Adulto , Albuterol/química , Antropometria , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Broncodilatadores/metabolismo , Ácidos Decanoicos/análise , Método Duplo-Cego , Feminino , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Placebos
6.
Thorax ; 71(2): 110-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26671307

RESUMO

BACKGROUND: Obstructive sleep apnoea (OSA) is highly prevalent and associated with cardiovascular and metabolic changes. OSA is usually diagnosed by polysomnography which is time-consuming and provides little information on the patient's phenotype thus limiting a personalised treatment approach. Exhaled breath contains information on metabolism which can be analysed by mass spectrometry within minutes. The objective of this study was to identify a breath profile in OSA recurrence by use of secondary-electrospray-ionization-mass spectrometry (SESI-MS). METHODS: Patients with OSA effectively treated with CPAP were randomised to either withdraw treatment (subtherapeutic CPAP) or continue therapeutic CPAP for 2 weeks. Exhaled breath analysis by untargeted SESI-MS was performed at baseline and 2 weeks after randomisation. The primary outcome was the change in exhaled molecular breath pattern. RESULTS: 30 patients with OSA were randomised and 26 completed the trial according to the protocol. CPAP withdrawal led to a recurrence of OSA (mean difference in change of oxygen desaturation index between groups +30.3/h; 95% CI 19.8/h,40.7/h, p<0.001) which was accompanied by a significant change in 62 exhaled features (16 metabolites identified). The panel of discriminating mass-spectral features allowed differentiation between treated and untreated OSA with a sensitivity of 92.9% and a specificity of 84.6%. CONCLUSION: Exhaled breath analysis by SESI-MS allows rapid and accurate detection of OSA recurrence. The technique has the potential to characterise an individual's metabolic response to OSA and thus makes a comprehensible phenotyping of OSA possible. TRIAL REGISTRATION NUMBER: NCT02050425 (registered at ClinicalTrials.gov).


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/métodos , Expiração/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/análise , Apneia Obstrutiva do Sono/terapia , Adulto , Idoso , Testes Respiratórios , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Estudos Retrospectivos , Apneia Obstrutiva do Sono/fisiopatologia , Desmame do Respirador , Suspensão de Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...