Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10367-10380, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569081

RESUMO

Comparison of bonding and electronic structural features between trivalent lanthanide (Ln) and actinide (An) complexes across homologous series' of molecules can provide insights into subtle and overt periodic trends. Of keen interest and debate is the extent to which the valence f- and d-orbitals of trivalent Ln/An ions engage in covalent interactions with different ligand donor functionalities and, crucially, how bonding differences change as both the Ln and An series are traversed. Synthesis and characterization (SC-XRD, NMR, UV-vis-NIR, and computational modeling) of the homologous lanthanide and actinide N-heterocyclic carbene (NHC) complexes [M(C5Me5)2(X)(IMe4)] {X = I, M = La, Ce, Pr, Nd, U, Np, Pu; X = Cl, M = Nd; X = I/Cl, M = Nd, Am; and IMe4 = [C(NMeCMe)2]} reveals consistently shorter An-C vs Ln-C distances that do not substantially converge upon reaching Am3+/Nd3+ comparison. Specifically, the difference of 0.064(6) Å observed in the La/U pair is comparable to the 0.062(4) Å difference observed in the Nd/Am pair. Computational analyses suggest that the cause of this unusual observation is rooted in the presence of π-bonding with the valence d-orbital manifold in actinide complexes that is not present in the lanthanide congeners. This is in contrast to other documented cases of shorter An-ligand vs Ln-ligand distances, which are often attributed to increased 5f vs 4f radial diffusivity leading to differences in 4f and 5f orbital bonding involvement. Moreover, in these traditional observations, as the 5f series is traversed, the 5f manifold contracts such that by americium structural studies often find no statistically significant Am3+vs Nd3+ metal-ligand bond length differences.

2.
J Am Chem Soc ; 146(6): 4098-4111, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301208

RESUMO

Organoplutonium chemistry was established in 1965, yet structurally authenticated plutonium-carbon bonds remain rare being limited to π-bonded carbocycle and σ-bonded isonitrile and hydrocarbyl derivatives. Thus, plutonium-carbenes, including alkylidenes and N-heterocyclic carbenes (NHCs), are unknown. Here, we report the preparation and characterization of the diphosphoniomethanide-plutonium complex [Pu(BIPMTMSH)(I)(µ-I)]2 (1Pu, BIPMTMSH = (Me3SiNPPh2)2CH) and the diphosphonioalkylidene-plutonium complexes [Pu(BIPMTMS)(I)(DME)] (2Pu, BIPMTMS = (Me3SiNPPh2)2C) and [Pu(BIPMTMS)(I)(IMe4)2] (3Pu, IMe4 = C(NMeCMe)2), thus disclosing non-actinyl transneptunium multiple bonds and transneptunium NHC complexes. These Pu-C double and dative bonds, along with cerium, praseodymium, samarium, uranium, and neptunium congeners, enable lanthanide-actinide and actinide-actinide comparisons between metals with similar ionic radii and isoelectronic 4f5 vs 5f5 electron-counts within conserved ligand fields over 12 complexes. Quantum chemical calculations reveal that the orbital-energy and spatial-overlap terms increase from uranium to neptunium; however, on moving to plutonium the orbital-energy matching improves but the spatial overlap decreases. The bonding picture that emerges is more complex than the traditional picture of the bonding of lanthanides being ionic and early actinides being more covalent but becoming more ionic left to right. Multiconfigurational calculations on 2M and 3M (M = Pu, Sm) account for the considerably more complex UV/vis/NIR spectra for 5f5 2Pu and 3Pu compared to 4f5 2Sm and 3Sm. Supporting the presence of Pu═C double bonds in 2Pu and 3Pu, 2Pu exhibits metallo-Wittig bond metathesis involving the highest atomic number element to date, reacting with benzaldehyde to produce the alkene PhC(H)═C(PPh2NSiMe3)2 (4) and "PuOI". In contrast, 2Ce and 2Pr do not react with benzaldehyde to produce 4.

3.
Chem Sci ; 14(27): 7438-7446, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449075

RESUMO

Reaction of the terphenyl bis(anilide) ligand [{K(DME)2}2LAr] (LAr = {C6H4[(2,6-iPr2C6H3)NC6H4]2}2-) with trivalent chloride "MCl3" salts (M = Ce, U, Np) yields two distinct products; neutral LArM(Cl)(THF) (1M) (M = Np, Ce), and the "-ate" complexes [K(DME)2][(LAr)Np(Cl)2] (2Np) or ([LArM(Cl)2(µ-K(X)2)])∞ (2Ce, 2U) (M = Ce, U) (X = DME or Et2O) (2M). Alternatively, analogous reactions with the iodide [MI3(THF)4] salts provide access to the neutral compounds LArM(I)(THF) (3M) (M = Ce, U, Np, Pu). All complexes exhibit close arene contacts suggestive of η6-interactions with the central arene ring of the terphenyl backbone, with 3M comprising the first structurally characterized Pu η6-arene moiety. Notably, the metal-arene bond metrics diverge from the predicted trends of metal-carbon interactions based on ionic radii, with the uranium complexes exhibiting the shortest M-Ccentroid distance in all cases. Overall, the data presents a systematic study of f-element M-η6-arene complexes across the early actinides U, Np, Pu, and comparison to cerium congeners.

4.
Anal Chem ; 95(23): 9123-9129, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37261935

RESUMO

In nuclear forensic analyses, measurements of actinide elements in a sample can assist with identifying interdicted or unknown materials. While these radiochemical signatures have been extensively investigated in uranium materials, less is known about bulk neptunium samples. This paper describes the measurement of trace actinide concentrations and isotopic profiles in a 237Np oxide sample. Uranium, plutonium, americium, and curium concentrations and isotopic profiles in the sample were determined and deemed potentially useful for distinguishing different sources of 237Np. Several different potential radiochronometry systems were also investigated; discordant results indicate that the Np sample was never completely purified of other actinide elements, or that subsequent contamination of the sample occurred. Few prior studies of neptunium materials have been reported, and these data suggest that trace actinide constituents could provide unique signatures to identify material out of regulatory control.

5.
Inorg Chem ; 62(22): 8462-8466, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220066

RESUMO

The oxidative chlorination of the plutonium metal was achieved through a reaction with gallium(III) chloride (GaCl3). In DME (DME = 1,2-dimethoxyethane) as the solvent, substoichiometric (2.8 equiv) amounts of GaCl3 were added, which consumed roughly 60% of the plutonium metal over the course of 10 days. The salt species [PuCl2(dme)3][GaCl4] was isolated as pale-purple crystals, and both solid-state and solution UV-vis-NIR spectroscopies were consistent with the formation of a trivalent plutonium complex. The analogous reaction was performed with uranium metal, generating a dicationic trivalent uranium complex crystallized as the [UCl(dme)3][GaCl4]2 salt. The extraction of [UCl(dme)3][GaCl4]2 in DME at 70 °C followed by crystallization produced [{U(dme)3}2(µ-Cl3)][GaCl4]3, a product arising from the loss of GaCl3. This method of halogenation worked on a small scale for plutonium and uranium, providing a route to cationic Pu3+ and dicationic U3+ complexes using GaCl3 in DME.

6.
Inorg Chem ; 62(15): 5897-5905, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36576312

RESUMO

1,3,5-Trimethyl-1,3,5-triazacyclohexane (Me3tach) readily complexes uranium triiodide to form (Me3tach)2UI3. The complex is soluble in THF and arenes and can function as a source of UI3 to form organometallic U(III) complexes. When dissolved in pyridine (py), (Me3tach)2UI3 forms (Me3tach)UI3(py)2. A related complex with the larger 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligand, namely (Me3tacn)UI3(THF), was synthesized for comparison. Since X-ray quality crystals of (Me3tach)2UI3 can be synthesized in high yield even with small-scale reactions, the system is ideal for extension to transuranium elements. Accordingly, the neptunium and plutonium complexes (Me3tach)2NpI3 and (Me3tach)2PuI3 were synthesized in an analogous manner from NpI3(THF)4 and PuI3(THF)4, respectively.

7.
Chem Commun (Camb) ; 58(95): 13278-13281, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36373547

RESUMO

σ-Hydrocarbyl complexes of the form [M(η5-PC4Me4)2(µ-η1:η6-CH2Ph)2K(η6-arene)] (M = La, Ce, Pr, U, Np, Pu; arene = benzene or toluene) were synthesised in one-pot reactions from [MI3(THF)4], or [U(BH4)3(toluene)] (M = U). All complexes were examined by multinuclear (1H, 13C{1H}, 31P{1H}) NMR and UV-vis-NIR spectroscopy, as well as single-crystal X-ray diffraction from which molecular metal-phosphorus bonds for Np and Pu, and a σ-hydrocarbyl metal-carbon bond for Pu, have been structurally authenticated.

8.
J Am Chem Soc ; 144(22): 9764-9774, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609882

RESUMO

Since the advent of organotransuranium chemistry six decades ago, structurally verified complexes remain restricted to π-bonded carbocycle and σ-bonded hydrocarbyl derivatives. Thus, transuranium-carbon multiple or dative bonds are yet to be reported. Here, utilizing diphosphoniomethanide precursors we report the synthesis and characterization of transuranium-carbene derivatives, namely, diphosphonio-alkylidene- and N-heterocyclic carbene-neptunium(III) complexes that exhibit polarized-covalent σ2π2 multiple and dative σ2 single transuranium-carbon bond interactions, respectively. The reaction of [NpIIII3(THF)4] with [Rb(BIPMTMSH)] (BIPMTMSH = {HC(PPh2NSiMe3)2}1-) affords [(BIPMTMSH)NpIII(I)2(THF)] (3Np) in situ, and subsequent treatment with the N-heterocyclic carbene {C(NMeCMe)2} (IMe4) allows isolation of [(BIPMTMSH)NpIII(I)2(IMe4)] (4Np). Separate treatment of in situ prepared 3Np with benzyl potassium in 1,2-dimethoxyethane (DME) affords [(BIPMTMS)NpIII(I)(DME)] (5Np, BIPMTMS = {C(PPh2NSiMe3)2}2-). Analogously, addition of benzyl potassium and IMe4 to 4Np gives [(BIPMTMS)NpIII(I)(IMe4)2] (6Np). The synthesis of 3Np-6Np was facilitated by adopting a scaled-down prechoreographed approach using cerium synthetic surrogates. The thorium(III) and uranium(III) analogues of these neptunium(III) complexes are currently unavailable, meaning that the synthesis of 4Np-6Np provides an example of experimental grounding of 5f- vs 5f- and 5f- vs 4f-element bonding and reactivity comparisons being led by nonaqueous transuranium chemistry rather than thorium and uranium congeners. Computational analysis suggests that these NpIII═C bonds are more covalent than UIII═C, CeIII═C, and PmIII═C congeners but comparable to analogous UIV═C bonds in terms of bond orders and total metal contributions to the M═C bonds. A preliminary assessment of NpIII═C reactivity has introduced multiple bond metathesis to transuranium chemistry, extending the range of known metallo-Wittig reactions to encompass actinide oxidation states III-VI.

9.
Nat Chem ; 14(3): 342-349, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35145247

RESUMO

Neptunium was the first actinide element to be artificially synthesized, yet, compared with its more famous neighbours uranium and plutonium, is less conspicuously studied. Most neptunium chemistry involves the neptunyl di(oxo)-motif, and transuranic compounds with one metal-ligand multiple bond are rare, being found only in extended-structure oxide, fluoride or oxyhalide materials. These combinations stabilize the required high oxidation states, which are otherwise challenging to realize for transuranic ions. Here we report the synthesis, isolation and characterization of a stable molecular neptunium(V)-mono(oxo) triamidoamine complex. We describe a strong Np≡O triple bond with dominant 5f-orbital contributions and σu > πu energy ordering, akin to terminal uranium-nitrides and di(oxo)-actinyls, but not the uranium-mono(oxo) triple bonds or other actinide multiple bonds reported so far. This work demonstrates that molecular high-oxidation-state transuranic complexes with a single metal-ligand bond can be stabilized and studied in isolation.

10.
Chem Commun (Camb) ; 58(7): 997-1000, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34937074

RESUMO

New coordination environments are reported for Np(III) and Pu(III) based on pilot studies of U(III) in 2.2.2-cryptand (crypt). The U(III)-in-crypt complex, [U(crypt)I2][I], obtained from the reaction between UI3 and crypt, is treated with Me3SiOTf (OTf = O3SCF3) in benzene to form the [U(crypt)(OTf)2][OTf] complex. Similarly, the isomorphous Np(III) and Pu(III) complexes were obtained similarly starting from [AnI3(THF)4]. All three complexes (1-An; An = U, Np, Pu) contain an encapsulated actinide in a THF-soluble complex. Absorption spectroscopy and DFT calculations are consistent with 5f3 U(III), 5f4 Np(III), and 5f5 Pu(III) electron configurations.

11.
J Am Chem Soc ; 143(49): 20680-20696, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854294

RESUMO

Direct comparison of homologous molecules provides a foundation from which to elucidate both subtle and patent changes in reactivity patterns, redox processes, and bonding properties across a series of elements. While trivalent molecular U chemistry is richly developed, analogous Np or Pu research has long been hindered by synthetic routes often requiring scarcely available metallic-phase source material, high-temperature solid-state reactions producing poorly soluble binary halides, or the use of pyrophoric reagents. The development of routes to nonaqueous Np3+/Pu3+ from widely available precursors can potentially transform the scope and pace of research into actinide periodicity. Here, aqueous stocks of An4+ (An = Np, Pu) are dehydrated to well-defined [AnCl4(DME)2] (DME = 1,2-dimethoxyethane), and then a single-step halide exchange/reduction employing Me3SiI produces [AnI3(THF)4] (THF = tetrahydrofuran) in a high to nearly quantitative crystalline yield (with I2 and Me3SiCl as easily removed byproducts). We demonstrate the synthetic utility of these An-iodide molecules, prepared by metal0-free routes, through characterization of archetypal complexes including the tris-silylamide, [Np{N(SiMe3)2}3], and bent metallocenes, [An(C5Me5)2(I)(THF)] (An = Np, Pu)─chosen because both motifs are ubiquitous in Th, U, and lanthanide research. The synthesis of [Np{N(Se═PPh2)2}3] is also reported, completing an isomorphous series that now extends from U to Am and is the first characterized Np3+-Se bond.

12.
Nature ; 599(7885): 421-424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789902

RESUMO

Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.

13.
Chem Sci ; 12(40): 13343-13359, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777753

RESUMO

There is significant interest in ligands that can stabilize actinide ions in oxidation states that can be exploited to chemically differentiate 5f and 4f elements. Applications range from developing large-scale actinide separation strategies for nuclear industry processing to carrying out analytical studies that support environmental monitoring and remediation efforts. Here, we report syntheses and characterization of Np(iv), Pu(iv) and Am(iii) complexes with N-tert-butyl-N-(pyridin-2-yl)hydroxylaminato, [2-( t BuNO)py]-(interchangeable hereafter with [( t BuNO)py]-), a ligand which was previously found to impart remarkable stability to cerium in the +4 oxidation state. An[( t BuNO)py]4 (An = Pu, 1; Np, 2) have been synthesized, characterized by X-ray diffraction, X-ray absorption, 1H NMR and UV-vis-NIR spectroscopies, and cyclic voltammetry, along with computational modeling and analysis. In the case of Pu, oxidation of Pu(iii) to Pu(iv) was observed upon complexation with the [( t BuNO)py]- ligand. The Pu complex 1 and Np complex 2 were also isolated directly from Pu(iv) and Np(iv) precursors. Electrochemical measurements indicate that a Pu(iii) species can be accessed upon one-electron reduction of 1 with a large negative reduction potential (E 1/2 = -2.26 V vs. Fc+/0). Applying oxidation potentials to 1 and 2 resulted in ligand-centered electron transfer reactions, which is different from the previously reported redox chemistry of UIV[( t BuNO)py]4 that revealed a stable U(v) product. Treatment of an anhydrous Am(iii) precursor with the [( t BuNO)py]- ligand did not result in oxidation to Am(iv). Instead, the dimeric complex [AmIII(µ2-( t BuNO)py)(( t BuNO)py)2]2 (3) was isolated. Complex 3 is a rare example of a structurally characterized non-aqueous Am-containing molecular complex prepared using inert atmosphere techniques. Predicted redox potentials from density functional theory calculations show a trivalent accessibility trend of U(iii) < Np(iii) < Pu(iii) and that the higher oxidation states of actinides (i.e., +5 for Np and Pu and +4 for Am) are not stabilized by [2-( t BuNO)py]-, in good agreement with experimental observations.

14.
Angew Chem Int Ed Engl ; 60(17): 9459-9466, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33529478

RESUMO

Covalency is often considered to be an influential factor in driving An3+ vs. Ln3+ selectivity invoked by soft donor ligands. This is intensely debated, particularly the extent to which An3+ /Ln3+ covalency differences prevail and manifest as the f-block is traversed, and the effects of periodic breaks beyond Pu. Herein, two Am complexes, [Am{N(E=PPh2 )2 }3 ] (1-Am, E=Se; 2-Am, E=O) are compared to isoradial [Nd{N(E=PPh2 )2 }3 ] (1-Nd, 2-Nd) complexes. Covalent contributions are assessed and compared to U/La and Pu/Ce analogues. Through ab initio calculations grounded in UV-vis-NIR spectroscopy and single-crystal X-ray structures, we observe differences in f orbital involvement between Am-Se and Nd-Se bonds, which are not present in O-donor congeners.

15.
Inorg Chem ; 60(4): 2740-2748, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33539075

RESUMO

Reaction of 3 equiv of NaNR2 (R = SiMe3) with NpCl4(DME)2 in THF afforded the Np(IV) silylamide complex, [Np(NR2)3Cl] (1), in good yield. Reaction of 1 with 1.5 equiv of KC8 in THF, in the presence of 1 equiv of dibenzo-18-crown-6, resulted in formation of [{K(DB-18-C-6)(THF)}3(µ3-Cl)][Np(NR2)3Cl]2 (4), also in good yield. Complex 4 represents the first structurally characterized Np(III) amide. Finally, reaction of NpCl4(DME)2 with 5 equiv of NaNR2 and 1 equiv of dibenzo-18-crown-6 afforded the Np(IV) bis(metallacycle), [{Na(DB-18-C-6)(Et2O)0.62(κ1-DME)0.38}2(µ-DME)][Np{N(R)(SiMe2CH2)}2(NR2)]2 (8), in moderate yield. Complex 8 was characterized by 1H NMR spectroscopy and X-ray crystallography and represents a rare example of a structurally characterized neptunium-hydrocarbyl complex. To support these studies, we also synthesized the uranium analogues of 4 and 8, namely, [K(2,2,2-cryptand)][U(NR2)3Cl] (2), [K(DB-18-C-6)(THF)2][U(NR2)3Cl] (3), [Na(DME)3][U{N(R)(SiMe2CH2)}2(NR2)] (6), and [{Na(DB-18-C-6)(Et2O)0.5(κ1-DME)0.5}2(µ-DME)][U{N(R)(SiMe2CH2)}2(NR2)]2 (7). Complexes 2, 3, 6, and 7 were characterized by a number of techniques, including NMR spectroscopy and X-ray crystallography.

16.
Inorg Chem ; 59(18): 13301-13314, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32910649

RESUMO

An approach to obtaining substantial amounts of data from a hazardous starting material that can only be obtained and handled in small quantities is demonstrated by the investigation of a single small-scale reaction of cyclooctatetraene, C8H8, with a solution obtained from the reduction of Cp'3Pu (Cp' = C5H4SiMe3) with potassium graphite. This one reaction coupled with oxidation of a product has provided single-crystal X-ray structural data on three organoplutonium compounds as well as information on redox chemistry thereby demonstrating an efficient route to new reactivity and structural information on this highly radioactive element. The crystal structures were obtained from the reduction of C8H8 by a putative Pu(II) complex, (Cp'3PuII)1-, generated in situ, to form the Pu(III) cyclooctatetraenide complex, [K(crypt)][(C8H8)2PuIII], 1-Pu, and the tetra(cyclopentadienyl) Pu(III) complex, [K(crypt)][Cp'4PuIII], 2-Pu. Oxidation of the sample of 1-Pu with Ag(I) afforded a third organoplutonium complex that has been structurally characterized for the first time, (C8H8)2PuIV, 3-Pu. Complexes 1-Pu and 3-Pu contain Pu sandwiched between parallel (C8H8)2- rings. The (Cp'4PuIII)- anion in 2-Pu features three η5-Cp' rings and one η1-Cp' ring, which is a rare example of a formal Pu-C η1-bond. In addition, this study addresses the challenge of small-scale synthesis imparted by radiological and material availability of transuranium isotopes, in particular that of pure metal samples. A route to an anhydrous Pu(III) starting material from the more readily available PuIVO2 was developed to facilitate reproducible syntheses and allow complete spectroscopic analysis of 1-Pu and 2-Pu. PuIVO2 was converted to PuIIIBr3(DME)2 (DME = CH3OCH2CH2OCH3) and subsequently PuIIIBr3(THF)x, which was used to independently synthesize 1-Pu, 2-Pu, and 3-Pu.

17.
J Am Chem Soc ; 141(44): 17867-17874, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31609114

RESUMO

Here we report the first series of in-plane thorium(IV), uranium(IV), and neptunium(IV) expanded porphyrin complexes. These actinide (An) complexes were synthesized using a hexa-aza porphyrin analogue, termed dipyriamethyrin, and the nonaqueous An(IV) precursors, ThCl4(DME)2, UCl4, and NpCl4(DME)2. The molecular and electronic structures of the ligand, each An(IV) complex, and a corresponding uranyl(VI) complex were characterized using nuclear magnetic resonance (NMR) and UV-vis spectroscopies as well as single-crystal X-ray diffraction analysis. Computational analyses of these complexes, coupled to their structural features, provide support for the conclusion that a greater degree of covalency in the ligand-cation orbital interactions arises as the early actinide series is traversed from Th(IV) to U(IV) and Np(IV). The axial ligands in the present An(IV) complexes proved labile, allowing for the electronic features of these complexes to be further modified.

18.
Angew Chem Int Ed Engl ; 58(34): 11695-11699, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31190446

RESUMO

We report the small-scale synthesis, isolated yield, single-crystal X-ray structure, 1 H NMR solution spectroscopy /solid-state UV/Vis-nIR spectroscopy, and density functional theory (DFT)/ab initio wave function theory calculations on an Am3+ organometallic complex, [Am(C5 Me4 H)3 ] (1). This constitutes the first quantitative data on Am-C bonding in a molecular species.

19.
Rev Sci Instrum ; 90(4): 044101, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043032

RESUMO

Thermodynamic properties of refractory materials, such as standard enthalpy of formation, heat content, and enthalpy of reaction, can be measured by high temperature calorimetry. In such experiments, a small sample pellet is dropped from room temperature into a calorimeter operating at high temperature (often 700 °C) with or without a molten salt solvent present in an inert crucible in the calorimeter chamber. However, for hazardous (radioactive, toxic, etc.) and/or air-sensitive (hygroscopic, sensitive to oxygen, pyrophoric, etc.) samples, it is necessary to utilize a sealed device to encapsulate and isolate the samples, crucibles, and solvent under a controlled atmosphere in order to prevent the materials from reactions and/or protect the personnel from hazardous exposure during the calorimetric experiments. We have developed a sample seal-and-drop device (calorimetric dropper) that can be readily installed onto the dropping tube of a calorimeter such as the Setaram AlexSYS Calvet-type high temperature calorimeter to fulfill two functions: (i) load hazardous or air-sensitive samples in an air-tight, sealed container and (ii) drop the samples into the calorimeter chamber using an "off-then-on" mechanism. As a case study, we used the calorimetric dropper for measurements of the enthalpy of drop solution of PuO2 in molten sodium molybdate (3Na2O·4MoO3) solvent at 700 °C. The obtained enthalpy of -52.21 ± 3.68 kJ/mol is consistent with the energetic systematics of other actinide oxides (UO2, ThO2, and NpO2). This capability has thus laid the foundation for thermodynamic studies of other Pu-bearing phases in the future.

20.
Chem Commun (Camb) ; 54(89): 12582-12585, 2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30349920

RESUMO

Complexation of Pu(iv) with the actinide extractant CyMe4-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline) was followed by vis-NIR spectroscopy in acetonitrile solution. The solid-state structure of the crystallized product suggests that Pu(iv) is reduced to Pu(iii) upon complexation. Analysis by DFT modeling is consistent with metal-based rather than ligand-based reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...