Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668489

RESUMO

Dyes provide a notable environmental issue as a result of their intrinsic poisonous and carcinogenic characteristics. An estimated 60,000 metric tons of dyes has been discharged into the environment, leading to a substantial increase in water pollution. The mitigation of these dyes is a substantial and intricate challenge. The primary objective of this research is to conduct a comprehensive analysis of the adsorption of cationic dyes containing positively charged groups such as sulphonates, amines, and triphenylmethanes. The adsorption study was carried out using four different low-cost adsorbents derived from biowaste, specifically Groundnut Shell (GS), Mosambi Peel (MP), Mango Bark (MBARK), and Mango Leaves (ML). The adsorbent materials were characterized using FTIR, UV-Vis spectroscopy, scanning electron microscopy (SEM), point-of-zero charge (PZC), and BET techniques. The adsorption capacity was found to be between 1.5 and 2.2 mg/gm for Groundnut Shell, Mosambi Peel, Mango Bark, and Mango Leaves for individual dye removal (Crystal violet, Methylene blue, Rhodamine B, and Malachite green). It was observed that adsorbent derived from mango bark showed excellent adsorption (%) in a mono-component dye system and, thus, was explored for the simultaneous removal of a mixture of the same dyes. MBARK exhibited an excellent overall dye removal efficiency of 94.44% (Qe = 2.7 mg/g) for the dye mixture in 60 min. From a detailed kinetic investigation, it was concluded that the adsorption followed the pseudo-second-order model (R2= 0.99963 to 1 for different dyes and adsorbents) hinting at chemisorption. The effect of the pH of the analyte solution and the dosage of adsorbent was also studied for simultaneous removal. The isothermal studies demonstrated that the Langmuir adsorption model (R2 = 0.99416) was the best-fitted model, suggesting monolayer adsorption. The adsorption process was predicted to be governed by ion exchange, electrostatic interaction, hydrogen bonding, pi-pi interaction, etc., based on charge, functional groups, and pH of dyes and adsorbent. Thus, this study highlights the application of low-cost biowaste as a potential adsorbent for the mitigation of toxic industrial dyes present in wastewater.

2.
Int J Biol Macromol ; 255: 128019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952802

RESUMO

Worldwide, burn wounds are severe health issues prone to bacterial infections and challenging to treat with traditional wound dressings. Therefore, a highly desirable biological macromolecules-based wound dressing with good antioxidant, antibacterial, biocompatible, and a large surface area is required. Herein, aim to develop a biological macromolecules-based physically cross-linked gelatin/polyglyceryl stearate/graphene oxide (GPGO) hydrogel to treat burn wounds. Four sets of hydrogels were prepared by varying GO concentrations. FT-IR, FE-SEM, viscosity analysis, mechanical and thermal stability confirmed the successful preparation of hydrogels with desired properties. Further, ß-carotene (0.5 mg/mL) was encapsulated in hydrogels to enhance the antioxidant activity, and a cumulative release as well as kinetics at pH 6.4 and 7.4 was performed. With an increase in GO concentration, hydrogels showed sustained release of ß-carotene. Among all, GPGO-3 ß hydrogel showed the highest antioxidant potency (57.75 %), hemocompatible (<5 %), cytocompatible (viable with NIH 3T3 cells), cell migration, proliferation, and in vitro wound healing. Also, GPGO-3 ß hydrogel showed efficient antibacterial activity (%inhibition of 85.5 % and 80.2 % and zone of 11 mm and 9.8 mm against S. aureus and E. coli). These results demonstrated the ability of GPGO-3 ß hydrogel as a promising candidate for burn wound healing applications.


Assuntos
Queimaduras , Hidrogéis , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Antioxidantes/farmacologia , Gelatina/química , Estearatos , beta Caroteno , Staphylococcus aureus , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Queimaduras/tratamento farmacológico
3.
Environ Sci Pollut Res Int ; 30(41): 94218-94228, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526820

RESUMO

In this research work, a novel design of an electro-Fenton reactor for the treatment of polluted water was investigated. In addition to the reactor with iron electrodes, a ceramic filter was also used. An electrical circuit was designed to change the cathodes and anodes every 24 s via an electrical relay between the electrodes. The untreated water was sucked into the reactor with an air pump and entered the electrocoagulation chamber after filtration with a ceramic filter. Then, it flows to the polyethylene filter to separate the coagulated particles from the fresh water. To produce 12 L of clean water, the system consumed 100 W of energy. Analysis of a river sample showed a reduction in nephelometric turbidity units (NTUs), total suspended solids (TSS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Turbidity reduction studies have shown that the system can improve water transparency by 95%, thereby improving water quality to acceptable levels. Further, this system reduced TSS by more than 86%. In addition, BOD was reduced by more than 84% and COD by more than 88%, as shown by the change in the ratio of BOD to COD from 0.44 to 0.625, indicating improved water quality. According to the results, the treatment system can clean polluted waters, particularly during floods and when industries discharge their effluents into rivers.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Porosidade , Poluentes Químicos da Água/análise , Eletrocoagulação/métodos , Análise da Demanda Biológica de Oxigênio
4.
Environ Res ; 225: 115571, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871943

RESUMO

This study used the gas-blowing method to develop a nanoporous hydrogel using poly (3-sulfopropyl acrylate-co-acrylic acid-co-acrylamide) grafted onto salep. The synthesis of the nanoporous hydrogel was optimized by various parameters for maximum swelling capacity. The nanoporous hydrogel was characterized using FT-IR, TGA, XRD, TEM, and SEM analyses. Images from SEM showed numerous pores and channels in the hydrogel with an average size of about 80 nm, forming a honeycomb-like shape. The change in surface charge was investigated by zeta potential and revealed that the surface charge of the hydrogel ranged from 20 mV at acidic conditions to -25 mV at basic conditions. The swelling behavior of optimum superabsorbent hydrogel was determined under different environmental conditions, such as different pH values, ionic strengths of the environment, and solvents. In addition, the swelling kinetics and the absorbance under loading of the hydrogel sample in different environments were investigated. Moreover, Methyl Orange (MO) dye was removed from aqueous solutions using the nanoporous hydrogel as an adsorbent. The adsorption behavior of the hydrogel was examined under various conditions, and the adsorption capacity of the hydrogel was found tobe 400 mg g-1. The maximum water uptake was obtained under the following conditions: Salep weight = 0.01 g, AA = 60 µL, MBA = 300 µL, APS = 60 µL, TEMED = 90 µL, AAm = 600 µL, and SPAK = 90 µL. Lastly, the adsorption kinetics was studied by employing pseudo-first-order, pseudo-second-order, and intra-particle diffusion models.


Assuntos
Nanoporos , Poluentes Químicos da Água , Hidrogéis/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química
5.
Toxics ; 11(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36850992

RESUMO

The current water crisis necessitates the development of new materials for wastewater treatment. A variety of nanomaterials are continuously being investigated for their potential as adsorbents for environmental remediation. Researchers intend to develop a low-cost, simple, and sustainable material that can cater to removal of pollutants. Biochar derived from biowaste is a potential candidate for the existing problem of water pollution. The review focuses on the various aspects of biochar, such as its sources, preparation methods, mechanism, applications for wastewater treatment, and its regeneration. Compared with other adsorbents, biochar is considered as an environmentally friendly, sustainable, and cost-effective substitute for waste management, climate protection, soil improvement, wastewater treatment, etc. The special properties of biochar such as porosity, surface area, surface charge, and functional groups can be easily modified by various chemical methods, resulting in improved adsorption properties. Therefore, in view of the increasing environmental pollution and the problems encountered by researchers in treating pollutants, biochar is of great importance. This review also highlights the challenges and prospective areas that can be explored and studied in more detail in the future.

6.
Environ Sci Pollut Res Int ; 30(16): 46159-46174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36710314

RESUMO

The generation of wastewater has increased rapidly with the expansion of industries, hence, posing a risk to human health and the environment. The development of novel materials and technologies for textile wastewater treatment is constantly evolving. In this work, the photocatalytic degradation of methylene blue employing ZSM-5 zeolite-doped polyaniline composites is presented. To fabricate ZSM-5-based polyaniline (PANI) composites, the simple approach of in situ oxidative polymerization has been adopted. Different weight ratios of ZSM-5 have been used for the synthesis, and samples have been labelled as PAZe-1, PAZe-5, and PAZe-10. Different characterization techniques were used to characterize the prepared composites, including field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and thermo-gravimetry analysis (TGA). The photocatalytic performance of polyaniline, ZSM-5, and their composites was assessed by monitoring the degradation of methylene blue in the presence of visible light. Degradation results of the polyaniline-doped composites were found to be better than that of the polyaniline alone. When the photocatalytic efficiencies of different composites were compared, the PAZe-1 showed the best performance, with 99.9% degradation efficiency after 210 min of irradiation, while PANI, PAZe-5, PAZe-10, and ZSM-5 show 38%, 82%, 71%, and 99% removal efficiency. Apart from methylene blue, the composite PAZe-1 was further explored for the degradation of other organic pollutants such as methyl orange, chlorpyrifos, 2,4-dichlorophenoxy acetic acid, and p-nitroaniline. To determine the reactive species involved in the photocatalysis mechanism, scavenger studies were performed.


Assuntos
Azul de Metileno , Zeolitas , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Água
7.
Nanomaterials (Basel) ; 12(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432233

RESUMO

The present study reported the synthesis of SnS2 nanoparticles by using a thermal decomposition approach using tin chloride and thioacetamide in diphenyl ether at 200 °C over 60 min. SnS2 nanoparticles with novel morphologies were prepared by the use of different alkylamines (namely, octylamine (OCA), dodecylamine (DDA), and oleylamine (OLA)), and their role during the synthesis was explored in detail. The synthesized SnS2 nanostructures were characterized using an array of analytical techniques. The XRD results confirmed the formation of hexagonal SnS2, and the crystallite size varied from 6.1 nm to 19.0 nm and from 2.5 to 8.8 nm for (100) and (011) reflections, respectively. The functional group and thermal analysis confirmed the presence of organics on the surface of nanoparticles. The FE-SEM results revealed nanoparticles, nanoplates, and flakes assembled into flower-like morphologies when dodecylamine, octylamine, and oleylamine were used as capping agents, respectively. The analysis of optical properties showed the variation in the bandgap and the concentration of surface defects on the SnS2 nanoparticles. The role of alkylamine as a capping agent was explored and discussed in detail in this paper and the mechanism for the evolution of different morphologies of SnS2 nanoparticles was also proposed.

8.
Polymers (Basel) ; 14(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297844

RESUMO

Pollution due to various heavy metals is increasing at an alarming rate. Removal of hexavalent chromium from the environment is a significant and challenging issue due to its toxic effects on the ecosystem. Development of a low-cost adsorbent with better adsorption efficiency is presently required. In this study, waste coconut fibers (CF) were used to prepare its composite with polyaniline (PANI) via in-situ oxidation. The obtained composites with varying loading of PANI (15, 25, 50, and 75% w/w) were characterized by FE-SEM, TGA, and FTIR spectroscopy. The prepared composites were evaluated for their adsorption performance for removal of Cr(VI). It was concluded that the composite with 50% w/w polyaniline loading on coconut fiber exhibited a maximum adsorption efficiency of 93.11% in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. From the optimization studies it was observed that the absorbents exhibited the best adsorption response for Cr(VI) removal with 0.25 mg/mL adsorbent at pH 4, in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. This study highlights the application of low-cost adsorbent as a potential candidate for the removal of hexavalent chromium. A detailed study on the adsorption kinetics and isothermal analysis was conducted for the removal of Cr(VI) from aqueous solution using coconut fiber-polyaniline composite. From the kinetic investigation, the adsorption was found to follow the pseudo second order model. The data obtained were best fitted to the Elovich model confirming the chemisorption of the Cr(VI) on coconut polymer composites. The analysis of the isothermal models indicated monolayer adsorption based on the Langmuir adsorption model.

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144986

RESUMO

All humans and animals need access to clean water in their daily lives. Unfortunately, we are facing water scarcity in several places around the world, and, intentionally or unintentionally, we are contaminating the water in a number of ways. The rise in population, globalization, and industrialization has simultaneously given rise to the generation of wastewater. The pollutants in wastewater, such as organic contaminants, heavy metals, agrochemicals, radioactive pollutants, etc., can cause various ailments as well as environmental damage. In addition to the existing pollutants, a number of new pollutants are now being produced by developing industries. To address this issue, we require some emerging tools and materials to remove effluents from wastewater. Zeolites are the porous aluminosilicates that have been used for the effective pollutant removal for a long time owing to their extraordinary adsorption and ion-exchange properties, which make them available for the removal of a variety of contaminants. However, zeolite alone shows much less photocatalytic efficiency, therefore, different photoactive materials are being doped with zeolites to enhance their photocatalytic efficiency. The fabrication of zeolite-based composites is emerging due to their powerful results as adsorbents, ion-exchangers, and additional benefits as good photocatalysts. This review highlights the types, synthesis and removal mechanisms of zeolite-based materials for wastewater treatment with the basic knowledge about zeolites and wastewater along with the research gaps, which gives a quality background of worldwide research on this topic for future developments.

10.
Gels ; 8(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35621561

RESUMO

Water is a vital resource that is required for social and economic development. A rapid increase in industrialization and numerous anthropogenic activities have resulted in severe water contamination. In particular, the contamination caused by heavy metal discharge has a negative impact on human health and the aquatic environment due to the non-biodegradability, toxicity, and carcinogenic effects of heavy metals. Thus, there is an immediate need to recycle wastewater before releasing heavy metals into water bodies. Hydrogels, as potent adsorbent materials, are a good contenders for treating toxic heavy metals in wastewater. Hydrogels are a soft matter formed via the cross-linking of natural or synthetic polymers to develop a three-dimensional mesh structure. The inherent properties of hydrogels, such as biodegradability, swell-ability, and functionalization, have made them superior applications for heavy metal removal. In this review, we have emphasized the recent development in the synthesis of hydrogel-based adsorbent materials. The review starts with a discussion on the methods used for recycling wastewater. The discussion then shifts to properties, classification based on various criteria, and surface functionality. In addition, the synthesis and adsorption mechanisms are explained in detail with the understanding of the regeneration, recovery, and reuse of hydrogel-based adsorbent materials. Therefore, the cost-effective, facile, easy to modify and biodegradable hydrogel may provide a long-term solution for heavy metal removal.

11.
J Nanosci Nanotechnol ; 18(1): 165-177, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768828

RESUMO

The present study reports the synthesis of SnS2 nanoparticles with different morphologies via a facile thermal decomposition approach. The SnS2 nanoparticles were synthesized using tin chloride and thiourea (or thioacetamide) in two different solvents (diphenyl ether and 1-octadecene). The SnS2 nanoparticles were extensively characterized using different analytical techniques. The crystallite size of SnS2 varies from 6.1 nm to 19.0 nm. Electron microscopy studies indicate that the SnS2 samples consist of flakes which assemble into different hierarchical structures such as ball dahlia, peony dahlia-like nanoflowers, nanoyarns and linear structures under different synthetic conditions. The SnS2 nanoparticles show interesting optical properties and the band gap varies from 2.31 eV to 2.94 eV. Detailed mechanism of formation of SnS2 nanoparticles with different morphologies has been proposed. The SnS2 nanoparticles were explored for photocatalytic reduction of Cr(VI) in an aqueous solution in the presence of sunlight and they act as visible light photocatalysts with good activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA