Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(6): 3599-3614, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36857642

RESUMO

We recently described a chemical strategy to pre-organize a trinucleotide subunit in a conformation suitable for Watson-Crick base pairing for modulating the binding kinetics of single-stranded oligonucleotides (ONs) using bis-phosphonate esters bridging hydrocarbon tethers to provide 11- and 15-membered macrocyclic analogues. In this manuscript, we describe the synthesis of all eight P-stereoisomers of macrocyclic 12-, 13-, 14-, and 16-membered hydrocarbon-bridged nucleotide trimers, their incorporation into ONs, and biophysical characterization of the modified ONs. The size of the macrocyclic tether and configuration at phosphorus had profound effects on hybridization kinetics. ONs containing 12- and 13-membered rings exhibited faster on-rates (up to 5-fold) and off-rates (up to 161-fold). In contrast, ONs using the larger ring size macrocycles generally exhibited smaller changes in binding kinetics relative to unmodified DNA. Interestingly, several of the analogues retained significant binding affinity for RNA based on their dissociation constants, despite being modestly destabilizing in the thermal denaturation experiments, highlighting the potential utility of measuring dissociation constants versus duplex thermal stability when evaluating novel nucleic acid analogues. Overall, our results provide additional insights into the ability of backbone-constrained macrocyclic nucleic acid analogues to modulate hybridization kinetics of modified ONs with RNA.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , RNA/química , Fósforo , Cinética , DNA/química , Oligonucleotídeos/química , Conformação de Ácido Nucleico
2.
Nucleic Acid Ther ; 32(3): 206-220, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35238617

RESUMO

The relatively large molecular size, diastereoisomeric nature, and complex impurity profiles of therapeutic phosphorothioate oligonucleotides create significant analytical challenges for the quality control laboratory. To overcome the lack of selectivity inherent to traditional chromatographic approaches, an ion pair liquid chromatography-mass spectrometry (LCMS) method combining ultraviolet and mass spectrometry quantification was developed and validated for >35 different oligonucleotide drug substances and products, including several commercialized drugs. The selection of chromatographic and spectrometric conditions, data acquisition and processing, critical aspects of sample and buffer preparation and instrument maintenance, and results from method validation experiments are discussed.


Assuntos
Bioensaio , Oligonucleotídeos Fosforotioatos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Oligonucleotídeos Fosforotioatos/uso terapêutico
3.
J Am Chem Soc ; 144(4): 1941-1950, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041415

RESUMO

The binding affinity of therapeutic oligonucleotides (ONs) for their cognate RNA is determined by the rates of association (ka) and dissociation (kd). Single-stranded ONs are highly flexible and can adopt multiple conformations in solution, some of which may not be conducive for hybridization. We investigated if restricting rotation around the sugar-phosphate backbone, by tethering two adjacent backbone phosphonate esters using hydrocarbon bridges, can modulate hybridization kinetics of the modified ONs for complementary RNA. Given the large number of possible analogues with different tether lengths and configurations at the phosphorus atoms, we employed molecular dynamic simulations to optimize the size of the hydrocarbon bridge to guide the synthetic efforts. The backbone-constrained nucleotide trimers with stereodefined configurations at the contiguous backbone phosphorus atoms were assembled using a ring-closing metathesis reaction, then incorporated into oligonucleotides by an in situ synthesis of the phosphoramidites followed by coupling to solid supports. Evaluation of the modified oligonucleotides revealed that 15-membered macrocyclic-constrained analogues displayed similar or slightly improved on-rates but significantly increased off-rates compared to unmodified DNA ONs, resulting in reduced duplex stability. In contrast, LNA ONs with conformationally preorganized furanose rings showed similar on-rates to DNA ONs but very slow off-rates, resulting in net improvement in duplex stability. Furthermore, the experimental data generally supported the molecular dynamics simulation results, suggesting that this strategy can be used as a predictive tool for designing the next generation of constrained backbone ON analogues with improved hybridization properties.


Assuntos
Hidrocarbonetos/química , RNA/química , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Organofosfonatos/química , RNA/metabolismo
4.
Haematologica ; 107(2): 519-531, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33567808

RESUMO

Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2'MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2'MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface Pselectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 mM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2'MOE ASO 487660 had no detectable platelet effects, while 2'MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.


Assuntos
Plaquetas , Oligonucleotídeos Antissenso , Humanos , Leucócitos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Ativação Plaquetária , Contagem de Plaquetas
5.
ACS Med Chem Lett ; 12(6): 922-927, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141070

RESUMO

Site-specific incorporation of 2'-modifications and neutral linkages in the deoxynucleotide gap region of toxic phosphorothioate (PS) gapmer ASOs can enhance therapeutic index and safety. In this manuscript, we determined the effect of introducing 2',5'-linked RNA in the deoxynucleotide gap region on toxicity and potency of PS ASOs. Our results demonstrate that incorporation of 2',5'-linked RNA in the gap region dramatically improved hepatotoxicity profile of PS-ASOs without compromising potency and provide a novel alternate chemical approach for improving therapeutic index of ASO drugs.

6.
J Med Chem ; 63(15): 8471-8484, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32677436

RESUMO

Despite recent advances, targeted delivery of therapeutic oligonucleotide to extra-hepatic tissues continues to be a challenging endeavor and efficient ligand-receptor systems need to be identified. To determine the feasibility of using neurotensin to improve the productive uptake of antisense oligonucleotides (ASO), we synthesized neurotensin-ASO conjugates and evaluated their cellular uptake and activity in cells and in mice. We performed a comprehensive structure-activity relationship study of the conjugates and determined the influence of ASO charge, ASO length, peptide charge, linker chemistry and ligand identity on receptor binding and internalization. We identified a modified neurotensin peptide capable of improving the cellular uptake and activity of gapmer ASOs in sortilin expressing cells (sixfold) and in spinal cord in mice (twofold). Neurotensin conjugation also improved the potency of morpholino ASO designed to correct splicing of survival motor neuron pre-mRNA in the cortex and striatum after intracerebroventricular injection. Neurotensin-mediated targeted delivery represents a possible approach for enhancing the potency of ASOs with diverse nucleic acid modifications.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Neurotensina/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/farmacocinética , Animais , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Morfolinos/administração & dosagem , Morfolinos/química , Morfolinos/farmacocinética , Oligonucleotídeos Antissenso/química
7.
Nucleic Acids Res ; 48(8): 4382-4395, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182359

RESUMO

Conjugation of antisense oligonucleotide (ASO) with a variety of distinct lipophilic moieties like fatty acids and cholesterol increases ASO accumulation and activity in multiple tissues. While lipid conjugation increases tissue exposure in mice and reduces excretion of ASO in urine, histological review of skeletal and cardiac muscle indicates that the increased tissue accumulation of lipid conjugated ASO is isolated to the interstitium. Administration of palmitic acid-conjugated ASO (Palm-ASO) in mice results in a rapid and substantial accumulation in the interstitium of muscle tissue followed by relatively rapid clearance and only slight increases in intracellular accumulation in myocytes. We propose a model whereby increased affinity for lipid particles, albumin, and other plasma proteins by lipid-conjugation facilitates ASO transport across endothelial barriers into tissue interstitium. However, this increased affinity for lipid particles and plasma proteins also facilitates the transport of ASO from the interstitium to the lymph and back into circulation. The cumulative effect is only a slight (∼2-fold) increase in tissue accumulation and similar increase in ASO activity. To support this proposal, we demonstrate that the activity of lipid conjugated ASO was reduced in two mouse models with defects in endothelial transport of macromolecules: caveolin-1 knockout (Cav1-/-) and FcRn knockout (FcRn-/-).


Assuntos
Oligonucleotídeos Antissenso/farmacocinética , Ácido Palmítico , Albuminas/genética , Albuminas/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Caveolina 1/genética , Feminino , Coração , Células Hep G2 , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Sistema Linfático/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Oligonucleotídeos Antissenso/química , Músculo Quadríceps/metabolismo , Receptores Fc/genética , Distribuição Tecidual
8.
Drug Metab Dispos ; 47(10): 1164-1173, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350288

RESUMO

Volanesorsen (previously known as ISIS 304801) is a 20-nucleotide partially 2'-O-(2-methoxyethyl) (2'-MOE)-modified antisense oligonucleotide (ASO) gapmer, which was recently approved in the European Union as a novel, first-in-class treatment in the reduction of triglyceride levels in patients with familial chylomicronemia syndrome. We characterized the absorption, distribution, metabolism, and excretion characteristics of volanesorsen in mice, rats, monkeys, and humans, in either radiolabeled or nonradiolabeled studies. This also included the characterization of all of the observed ASO metabolite species excreted in urine. Volanesorsen is highly bound to plasma proteins that are similar in mice, monkeys, and humans. In all species, plasma concentrations declined in a multiphasic fashion, characterized by a relatively fast initial distribution phase and then a much slower terminal elimination phase following subcutaneous bolus administration. The plasma metabolite profiles of volanesorsen are similar across species, with volanesorsen as the major component. Various shortened oligonucleotide metabolites (5-19 nucleotides long) were identified in tissues in the multiple-dose mouse and monkey studies, but fewer in the [3H]-volanesorsen rat study, likely due to a lower accumulation of metabolites following a single dose in rats. In urine, all metabolites identified in tissues were observed, consistent with both endo- and exonuclease-mediated metabolism and urinary excretion being the major elimination pathway for volanesorsen and its metabolites. SIGNIFICANCE STATEMENT: We characterized the absorption, distribution, metabolism, and excretion (ADME) of volanesorsen, a partially 2'-MOE-modified antisense oligonucleotide, from mouse to man utilizing novel extraction and quantitation techniques in samples collected from preclinical toxicology studies, a 3H rat ADME study, and a phase 1 clinical trial.


Assuntos
Apolipoproteína C-III/antagonistas & inibidores , Proteínas Sanguíneas/metabolismo , Oligonucleotídeos/farmacocinética , Adulto , Animais , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Voluntários Saudáveis , Humanos , Hiperlipoproteinemia Tipo I/sangue , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/genética , Injeções Subcutâneas , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos , Pessoa de Meia-Idade , Mutação , Oligonucleotídeos/administração & dosagem , Ratos , Eliminação Renal , Especificidade da Espécie , Distribuição Tecidual , Triglicerídeos/sangue , Triglicerídeos/metabolismo
9.
Nucleic Acids Res ; 47(12): 6045-6058, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31076766

RESUMO

We determined the effect of attaching palmitate, tocopherol or cholesterol to PS ASOs and their effects on plasma protein binding and on enhancing ASO potency in the muscle of rodents and monkeys. We found that cholesterol ASO conjugates showed 5-fold potency enhancement in the muscle of rodents relative to unconjugated ASOs. However, they were toxic in mice and as a result were not evaluated in the monkey. In contrast, palmitate and tocopherol-conjugated ASOs showed enhanced potency in the skeletal muscle of rodents and modest enhancements in potency in the monkey. Analysis of the plasma-protein binding profiles of the ASO-conjugates by size-exclusion chromatography revealed distinct and species-specific differences in their association with plasma proteins which likely rationalizes their behavior in animals. Overall, our data suggest that modulating binding to plasma proteins can influence ASO activity and distribution to extra-hepatic tissues in a species-dependent manner and sets the stage to identify other strategies to enhance ASO potency in muscle tissues.


Assuntos
Músculo Esquelético , Miocárdio , Oligonucleotídeos Antissenso/química , Células 3T3-L1 , Albuminas/metabolismo , Animais , Colesterol/química , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/toxicidade , Palmitatos/química , Ratos Sprague-Dawley , Tocoferóis/química
10.
Nucleic Acids Res ; 47(12): 6029-6044, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127296

RESUMO

Enhancing the functional uptake of antisense oligonucleotide (ASO) in the muscle will be beneficial for developing ASO therapeutics targeting genes expressed in the muscle. We hypothesized that improving albumin binding will facilitate traversal of ASO from the blood compartment to the interstitium of the muscle tissues to enhance ASO functional uptake. We synthesized structurally diverse saturated and unsaturated fatty acid conjugated ASOs with a range of hydrophobicity. The binding affinity of ASO fatty acid conjugates to plasma proteins improved with fatty acid chain length and highest binding affinity was observed with ASO conjugates containing fatty acid chain length from 16 to 22 carbons. The degree of unsaturation or conformation of double bond appears to have no influence on protein binding or activity of ASO fatty acid conjugates. Activity of fatty acid ASO conjugates correlated with the affinity to albumin and the tightest albumin binder exhibited the highest activity improvement in muscle. Palmitic acid conjugation increases ASO plasma Cmax and improved delivery of ASO to interstitial space of mouse muscle. Conjugation of palmitic acid improved potency of DMPK, Cav3, CD36 and Malat-1 ASOs (3- to 7-fold) in mouse muscle. Our approach provides a foundation for developing more effective therapeutic ASOs for muscle disorders.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , Ácido Palmítico/química , Animais , Proteínas Sanguíneas/metabolismo , Antígenos CD36/genética , Caveolina 3/genética , Ácidos Graxos/química , Ácidos Graxos Insaturados/química , Masculino , Camundongos Endogâmicos C57BL , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Relação Estrutura-Atividade
11.
Nucleic Acids Res ; 47(11): 5465-5479, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31034558

RESUMO

Phosphorothioate-modified antisense oligonucleotides (PS-ASOs) interact with a host of plasma, cell-surface and intracellular proteins which govern their therapeutic properties. Given the importance of PS backbone for interaction with proteins, we systematically replaced anionic PS-linkages in toxic ASOs with charge-neutral alkylphosphonate linkages. Site-specific incorporation of alkyl phosphonates altered the RNaseH1 cleavage patterns but overall rates of cleavage and activity versus the on-target gene in cells and in mice were only minimally affected. However, replacing even one PS-linkage at position 2 or 3 from the 5'-side of the DNA-gap with alkylphosphonates reduced or eliminated toxicity of several hepatotoxic gapmer ASOs. The reduction in toxicity was accompanied by the absence of nucleolar mislocalization of paraspeckle protein P54nrb, ablation of P21 mRNA elevation and caspase activation in cells, and hepatotoxicity in mice. The generality of these observations was further demonstrated for several ASOs versus multiple gene targets. Our results add to the types of structural modifications that can be used in the gap-region to enhance ASO safety and provide insights into understanding the biochemistry of PS ASO protein interactions.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Oligonucleotídeos Antissenso/química , Organofosfonatos/química , Oligonucleotídeos Fosforotioatos/química , Células 3T3-L1 , Animais , Caspases/metabolismo , Linhagem Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Proteínas de Ligação a DNA , Células HeLa , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Fosforotioatos/administração & dosagem , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
12.
Nucleic Acids Res ; 47(3): 1110-1122, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30566688

RESUMO

Interactions of chemically modified nucleic acid therapeutics with plasma proteins play an important role in facilitating distribution from the injection site to peripheral tissues by reducing renal clearance. Despite the importance of these interactions, analytical methods that can characterize binding constants with individual plasma proteins in a reliable and high throughput manner are not easily available. We developed a fluorescence polarization (FP) based assay and measured binding constants for the 25 most abundant human plasma proteins with phosphorothioate (PS) modified antisense oligonucleotides (ASOs). We evaluated the influence of sequence, sugar modifications, and PS content on ASO interactions with several abundant human plasma proteins and determined the effect of salt and pH on these interactions. PS ASOs were found to associate predominantly with albumin and histidine-rich glycoprotein (HRG) in mouse and human plasma by size-exclusion chromatography. In contrast, PS ASOs associate predominantly with HRG in monkey plasma because of higher concentrations of this protein in monkeys. Finally, plasma proteins capable of binding PS ASOs in human plasma were confirmed by employing affinity chromatography and proteomics. Our results indicate distinct differences in contributions from the PS backbone, nucleobase composition and oligonucleotide flexibility to protein binding.


Assuntos
Proteínas Sanguíneas/metabolismo , Polarização de Fluorescência , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , Animais , Carbocianinas , Corantes Fluorescentes , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Oligonucleotídeos Fosforotioatos/metabolismo , Ligação Proteica , Ratos , Albumina Sérica/metabolismo , Cloreto de Sódio
13.
Biochemistry ; 57(14): 2061-2064, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29589907

RESUMO

The Stabilin receptors are systemic clearance receptors for some classes of chemically modified nucleic acid therapeutics. In this study, the recombinant human secreted ecto-domain of the small isoform of Stabilin-2 (s190) was purified from cell culture and evaluated for direct binding with a multitude of antisense oligonucleotides (ASOs) using a fluorescence polarization-based assay. The tested ASOs varied in their backbone composition, modification of the ribose 2' position, overall length of the oligo, and sequence of the nucleotide bases. A fully phosphorothioate (PS) ASO with a 5-10-5 pattern of flanking 2'- O-methoxyethyl modifications was then used to test the effects of pH and salt concentration on receptor binding. These tests concluded that the PS backbone was the primary determinant for ASO binding and that decreasing pH and increasing salt generally increased the rate of ligand dissociation and fit within the biological parameters expected of a constitutive recycling receptor. These results will be useful in the rational design of therapeutic oligonucleotides for enhancing their affinity or avoidance of the Stabilin receptors.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Polarização de Fluorescência , Oligodesoxirribonucleotídeos Antissenso/química , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Domínios Proteicos , Proteínas Recombinantes/química , Relação Estrutura-Atividade
15.
Nucleic Acids Res ; 45(5): 2294-2306, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28158620

RESUMO

Targeted delivery of antisense oligonucleotides (ASO) to hepatocytes via the asialoglycoprotein receptor (ASGR) has improved the potency of ASO drugs ∼30-fold in the clinic (1). In order to fully characterize the effect of GalNAc valency, oligonucleotide length, flexibility and chemical composition on ASGR binding, we tested and validated a fluorescence polarization competition binding assay. The ASGR binding, and in vitro and in vivo activities of 1, 2 and 3 GalNAc conjugated single stranded and duplexed ASOs were studied. Two and three GalNAc conjugated single stranded ASOs bind the ASGR with the strongest affinity and display optimal in vitro and in vivo activities. 1 GalNAc conjugated ASOs showed 10-fold reduced ASGR binding affinity relative to three GalNAc ASOs but only 2-fold reduced activity in mice. An unexpected observation was that the ASGR also appears to play a role in the uptake of unconjugated phosphorothioate modified ASOs in the liver as evidenced by the loss of activity of GalNAc conjugated and unconjugated ASOs in ASGR knockout mice. Our results provide insights into how backbone charge and chemical composition assist in the binding and internalization of highly polar anionic single stranded oligonucleotides into cells and tissues.


Assuntos
Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Bioensaio , DNA de Cadeia Simples/química , DNA/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , Animais , Receptor de Asialoglicoproteína/genética , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Transporte Biológico , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Polarização de Fluorescência , Glicoconjugados/química , Glicoconjugados/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Cinética , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Cultura Primária de Células , Ligação Proteica , Eletricidade Estática
16.
Bioorg Med Chem Lett ; 26(15): 3690-3, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27268307

RESUMO

Antisense oligonucleotides (ASOs) conjugated to trivalent GalNAc ligands show 10-fold enhanced potency for suppressing gene targets expressed in hepatocytes. Trivalent GalNAc is a high affinity ligand for the asialoglycoprotein receptor (ASGR)-a C-type lectin expressed almost exclusively on hepatocytes in the liver. In this communication, we show that conjugation of two and even one GalNAc sugar to single stranded chemically modified ASOs can enhance potency 5-10 fold in mice. Evaluation of the mono- and di-GalNAc ASO conjugates in an ASGR binding assay suggested that chemical features of the ASO enhance binding to the receptor and provide a rationale for the enhanced potency.


Assuntos
Acetilgalactosamina/farmacologia , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Acetilgalactosamina/administração & dosagem , Acetilgalactosamina/química , Animais , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/antagonistas & inibidores , Receptores Depuradores Classe B/metabolismo , Relação Estrutura-Atividade
17.
Mol Ther Nucleic Acids ; 5: e319, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27164023

RESUMO

Triantennary N-acetyl galactosamine (GalNAc3) is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA)-C6 cluster significantly enhances antisense oligonucleotide (ASO) potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of (3)H-radiolabeled ((3)H placed in THA) or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5'-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the ß-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining ß-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-ß-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs.

18.
Nucleic Acid Ther ; 26(4): 223-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27031383

RESUMO

To investigate the pharmacokinetics (PKs) and pharmacodynamics (PDs) for ION-353382, an antisense oligonucleotide (ASO) targeting scavenger receptor class B type I (SRB1) mRNA, using alpha-2-macroglobulin (A2M), murinoglobulin double-knockout (DKO), and wild-type mice. Wild-type and DKO homozygous mice were administered a single subcutaneous injection of ION-353382 at 0, 5, 15, 30, and 60 mg/kg. Mice were sacrificed at 72 h with plasma and organs harvested. Both liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) were used to determine ASO exposure with real-time PCR for SRB1 expression. Immunohistochemistry was evaluated to explore hepatic uptake of ASOs. The total plasma protein binding and profiling was assessed. Finally, two-dimensional gel electrophoresis identified protein expression differences. PK exposures were comparable between wild-type and DKO mice in plasma, liver, and kidney, yet a near twofold reduction in EC50 was revealed for DKO mice based on an inhibitory effect liver exposure response model. Total plasma protein binding and profiling revealed no major dissimilarities between both groups. Plasma proteome fingerprinting confirmed protein expression variations related to A2M. Histological examination revealed enhanced ASO distribution into hepatocytes and less nonparenchymal uptake for DKO mice compared to wild-type mice. Knocking out A2M showed improved PD activities without an effect on total plasma and tissue exposure kinetics. Binding to A2M could mediate ASOs to nonproductive compartments, and thus, decreased binding of ASOs to A2M could potentially improve ASO pharmacology.


Assuntos
Oligonucleotídeos Antissenso/genética , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Receptores Depuradores Classe B/genética , Soroglobulinas/genética , Animais , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/farmacologia , alfa 2-Macroglobulinas Associadas à Gravidez/antagonistas & inibidores , Receptores Depuradores Classe B/antagonistas & inibidores , Soroglobulinas/antagonistas & inibidores
19.
J Med Chem ; 59(6): 2718-33, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26914862

RESUMO

The comprehensive structure-activity relationships of triantennary GalNAc conjugated ASOs for enhancing potency via ASGR mediated delivery to hepatocytes is reported. Seventeen GalNAc clusters were assembled from six distinct scaffolds and attached to ASOs. The resulting ASO conjugates were evaluated in ASGR binding assays, in primary hepatocytes, and in mice. Five structurally distinct GalNAc clusters were chosen for more extensive evaluation using ASOs targeting SRB-1, A1AT, FXI, TTR, and ApoC III mRNAs. GalNAc-ASO conjugates exhibited excellent potencies (ED50 0.5-2 mg/kg) for reducing the targeted mRNAs and proteins. This work culminated in the identification of a simplified tris-based GalNAc cluster (THA-GN3), which can be efficiently assembled using readily available starting materials and conjugated to ASOs using a solution phase conjugation strategy. GalNAc-ASO conjugates thus represent a viable approach for enhancing potency of ASO drugs in the clinic without adding significant complexity or cost to existing protocols for manufacturing oligonucleotide drugs.


Assuntos
Acetilgalactosamina/síntese química , Acetilgalactosamina/farmacologia , Hepatócitos/efeitos dos fármacos , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/farmacologia , Animais , Apolipoproteína C-III/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Fator XI/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Depuradores Classe B/biossíntese , Receptores Depuradores Classe B/genética , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 25(19): 4127-30, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26299345

RESUMO

A convenient solid-phase synthetic method was developed for assembling a triantennary N-acetylgalactosamine (GalNAc) cluster on the 5'-end of antisense oligonucleotide using phosphoramidite chemistry. Conjugation of the 5'-triantennary GalNAc cluster improved potency of the 14 mer ASO 7-fold in mice and more than 50 fold in hepatocytes. The synthetic approach described in this Letter simplifies the synthesis of 5'-triantennary GalNAc cluster conjugated ASOs and helps understand the structure-activity relationship for targeting hepatocytes with oligonucleotide therapeutics.


Assuntos
Acetilgalactosamina/análogos & derivados , Acetilgalactosamina/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/síntese química , Compostos Organofosforados/química , Receptores Depuradores Classe B/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Fígado/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...