Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(4): e202210828, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36278885

RESUMO

MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.

3.
Nat Commun ; 13(1): 4470, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918385

RESUMO

Lithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-state batteries display some of the highest ionic conductivities reported to date. However, the effect of polyanion mixing on the ion-transport properties is still not fully understood. Here, we focus on Na1+xZr2SixP3-xO12 (0 ≤ x ≤ 3) NASICON electrolyte to elucidate the role of polyanion mixing on the Na-ion transport properties. Although NASICON is a widely investigated system, transport properties derived from experiments or theory vary by orders of magnitude. We use more than 2000 distinct ab initio-based kinetic Monte Carlo simulations to map the compositional space of NASICON over various time ranges, spatial resolutions and temperatures. Via electrochemical impedance spectroscopy measurements on samples with different sodium content, we find that the highest ionic conductivity (i.e., about 0.165 S cm-1 at 473 K) is experimentally achieved in Na3.4Zr2Si2.4P0.6O12, in line with simulations (i.e., about 0.170 S cm-1 at 473 K). The theoretical studies indicate that doped NASICON compounds (especially those with a silicon content x ≥ 2.4) can improve the Na-ion mobility compared to undoped NASICON compositions.

4.
J Am Chem Soc ; 143(33): 13212-13227, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428909

RESUMO

The control of oxygen vacancy (VO) formation is critical to advancing multiple metal-oxide-perovskite-based technologies. We report the construction of a compact linear model for the neutral VO formation energy in ABO3 perovskites that reproduces, with reasonable fidelity, Hubbard-U-corrected density functional theory calculations based on the state-of-the-art, strongly constrained and appropriately normed exchange-correlation functional. We obtain a mean absolute error of 0.45 eV for perovskites stable at 298 K, an accuracy that holds across a large, electronically diverse set of ABO3 perovskites. Our model considers perovskites containing alkaline-earth metals (Ca, Sr, and Ba) and lanthanides (La and Ce) on the A-site and 3d transition metals (Ti, V, Cr, Mn, Fe, Co, and Ni) on the B-site in six different crystal systems (cubic, tetragonal, orthorhombic, hexagonal, rhombohedral, and monoclinic) common to perovskites. Physically intuitive metrics easily extracted from existing experimental thermochemical data or via inexpensive quantum mechanical calculations, including crystal bond dissociation energies and (solid phase) reduction potentials, are key components of the model. Beyond validation of the model against known experimental trends in materials used in solid oxide fuel cells, the model yields new candidate perovskites not contained in our training data set, such as (Bi,Y)(Fe,Co)O3, which we predict may have favorable thermochemical water-splitting properties. The confluence of sufficient accuracy, efficiency, and interpretability afforded by our model not only facilitates high-throughput computational screening for any application that requires the precise control of VO concentrations but also provides a clear picture of the dominant physics governing VO formation in metal-oxide perovskites.

5.
Chem Commun (Camb) ; 51(71): 13619-22, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26225908

RESUMO

A systematic first-principles evaluation of the insertion behavior of multi-valent cations in orthorhombic V2O5 is performed. Layer spacing, voltage, phase stability, and ion mobility are computed for Li(+), Mg(2+), Zn(2+), Ca(2+), and Al(3+) intercalation in the α and δ polymorphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...