Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10961, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745071

RESUMO

This paper introduces new contributions for construction procedures designed to enhance the robustness and precision of stress control in active anchorage and short presetressing units for long-span bridges, particularly addressing potential technical risks. The primary focus is on optimizing stress management for bridge stays, suspension cables, and short prestressing units by emphasizing a unified parameter: stress. The contributions of this research encompass (1) the introduction of advanced load cells for stress control in active anchorages and (2) the implementation of a novel synchronized multi-strain gage load cell network for short prestressing units, crucial in situations where prestressing losses can attain significant magnitudes. To validate these advancements, the authors present (3) a practical experience and results obtained from applying these methodologies in monitoring the structural response during the construction of the Tajo Bridge using the cable-stayed cantilever technique.

2.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837034

RESUMO

The use of fibre-reinforced concrete (FRC) in structural applications is increasing significantly as a result of (1) the acceptance of this composite into design guidelines and (2) the improvement in terms of sustainability performance that has been reported for cases where FRC has been used. In this context, fibre orientation and distribution are factors that govern the post-cracking response of the FRC. Researchers have already dealt with the analysis of both variables from an experimental and numerical perspective, and design-oriented recommendations were included in existing design guidelines (i.e., fib Model Code 2020). Nonetheless, there are still technical aspects to be answered within a research framework before the influence of these variables on the mechanical response of FRC could be covered with sufficient reliability. In this regard, this research is aimed at shedding light on the influence of the mould geometry and concrete pouring/vibration procedures on the fibre orientation and distribution variables as well as on the post-cracking performance of the FRC. An extensive experimental programme aimed at characterising these variables using novel testing techniques (i.e., an inductive non-destructive approach for quantifying fibre amount and orientation and the BCN test for assessing the pre- and post-cracking responses of the FRC) was carried out for this purpose. A relationship has been found between the shape of the formwork and the direction of pouring, along with the direction and distribution of the fibres, both of which proved to have an influence on the residual tensile strength of the concrete. However, it has been confirmed that the first crack resistance depends on the concrete matrix, with the addition of fibres having no relevant influence on that mechanical parameter. The results and conclusions derived from this experimental programme can be extended to FRCs and boundary conditions similar to those established herein.

3.
Sci Rep ; 12(1): 12500, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864138

RESUMO

A correct modal analysis of girder bridge decks requires a correct characterisation of the deformation of their cross-section, governed by the longitudinal bending of the girders and the transverse bending of the slab. This paper presents a novel method that allows the modal analysis of girder bridge decks by applying a matrix formulation that reduces the structural problem to one degree of freedom for each girder: the deflection at the centre of the beam span. A parametric study is presented that analyses the structural response of 64 girder bridge decks. The study compares the dynamic structural response obtained by the proposed method with that obtained by traditional grillage calculation methods. The method is experimentally contrasted by a dynamic load test of a full-scale girder bridge. As a result of the analysis, the proposed method reflects adequate convergence with the experimental dynamic structural response. The use of the proposed novel analysis method contributes to the intelligent modelling process for the analysis of the dynamic behaviour of bridges opening the way to easily feed a Digital Twin accelerating the demands of the Decision Support System in real time.

4.
Sci Rep ; 12(1): 7689, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546165

RESUMO

This article deals with the comparative analysis of current cable force monitoring techniques. In addition, the experience of three cable stress monitoring techniques during the construction phase is included: (a) the installation of load cells on the active anchorages of the cables, (b) the installation of unidirectional strain gauges, and (c) the evaluation of stresses in cables applying the vibrating wire technique by means of the installation of accelerometers. The main advantages and disadvantages of each technique analysed are highlighted in the Construction Process context of the Tajo Viaduct, one of the most singular viaducts recently built in Spain.


Assuntos
Fios Ortopédicos , Rios , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA