Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(10): 2562-2567, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223524

RESUMO

ß-Arrestins (ßarrs) interact with G protein-coupled receptors (GPCRs) to desensitize G protein signaling, to initiate signaling on their own, and to mediate receptor endocytosis. Prior structural studies have revealed two unique conformations of GPCR-ßarr complexes: the "tail" conformation, with ßarr primarily coupled to the phosphorylated GPCR C-terminal tail, and the "core" conformation, where, in addition to the phosphorylated C-terminal tail, ßarr is further engaged with the receptor transmembrane core. However, the relationship of these distinct conformations to the various functions of ßarrs is unknown. Here, we created a mutant form of ßarr lacking the "finger-loop" region, which is unable to form the core conformation but retains the ability to form the tail conformation. We find that the tail conformation preserves the ability to mediate receptor internalization and ßarr signaling but not desensitization of G protein signaling. Thus, the two GPCR-ßarr conformations can carry out distinct functions.


Assuntos
Endocitose/genética , Proteínas Mutantes/química , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química , Sequência de Aminoácidos/genética , Reguladores de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Conformação Molecular , Complexos Multiproteicos , Proteínas Mutantes/genética , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética
2.
Proc Natl Acad Sci U S A ; 114(7): 1708-1713, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28130548

RESUMO

The ß2-adrenergic receptor (ß2AR) has been a model system for understanding regulatory mechanisms of G-protein-coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known ß-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human ß2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the ß2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the ß2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the ß2AR. In cell-signaling studies, 15 inhibits cAMP production through the ß2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits ß-arrestin recruitment to the activated ß2AR. This study presents an allosteric small-molecule ligand for the ß2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Receptores Adrenérgicos beta 2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Animais , Sítios de Ligação/genética , Ligação Competitiva/efeitos dos fármacos , DNA/genética , Humanos , Ligantes , Estrutura Molecular , Mutação , Receptores Adrenérgicos beta 2/genética , Células Sf9 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Spodoptera
3.
Hum Mol Genet ; 23(9): 2447-58, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24352790

RESUMO

Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.


Assuntos
Éxons/genética , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Animais , Western Blotting , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética
4.
J Clin Invest ; 113(4): 539-50, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14966563

RESUMO

Isoprenylcysteine carboxyl methyltransferase (Icmt) methylates the carboxyl-terminal isoprenylcysteine of CAAX proteins (e.g., Ras and Rho proteins). In the case of the Ras proteins, carboxyl methylation is important for targeting of the proteins to the plasma membrane. We hypothesized that a knockout of Icmt would reduce the ability of cells to be transformed by K-Ras. Fibroblasts harboring a floxed Icmt allele and expressing activated K-Ras (K-Ras-Icmt(flx/flx)) were treated with Cre-adenovirus, producing K-Ras-Icmt(Delta/Delta) fibroblasts. Inactivation of Icmt inhibited cell growth and K-Ras-induced oncogenic transformation, both in soft agar assays and in a nude mice model. The inactivation of Icmt did not affect growth factor-stimulated phosphorylation of Erk1/2 or Akt1. However, levels of RhoA were greatly reduced as a consequence of accelerated protein turnover. In addition, there was a large Ras/Erk1/2-dependent increase in p21(Cip1), which was probably a consequence of the reduced levels of RhoA. Deletion of p21(Cip1) restored the ability of K-Ras-Icmt(Delta/Delta) fibroblasts to grow in soft agar. The effect of inactivating Icmt was not limited to the inhibition of K-Ras-induced transformation: inactivation of Icmt blocked transformation by an oncogenic form of B-Raf (V599E). These studies identify Icmt as a potential target for reducing the growth of K-Ras- and B-Raf-induced malignancies.


Assuntos
Transformação Celular Neoplásica , Genes ras , Proteínas Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/metabolismo , Alelos , Animais , Divisão Celular/fisiologia , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Proteínas Metiltransferases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas rho de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 279(6): 4729-36, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14625273

RESUMO

Proteins terminating with a CAAX motif, such as the Ras proteins and the nuclear lamins, undergo post-translational modification of a C-terminal cysteine with an isoprenyl lipid via a process called protein prenylation. After prenylation, the last three residues of CAAX proteins are clipped off by Rce1, an integral membrane endoprotease of the endoplasmic reticulum. Prenylation is crucial to the function of many CAAX proteins, but the physiologic significance of endoproteolytic processing has remained obscure. To address this issue, we used Cre/loxP recombination techniques to create mice lacking Rce1 in the heart, an organ where Rce1 is expressed at particularly high levels. The hearts from heart-specific Rce1 knockout mice manifested reduced levels of both the Rce1 mRNA and CAAX endoprotease activity, and the hearts manifested an accumulation of CAAX protein substrates. The heart-specific Rce1 knockout mice initially appeared healthy but died starting at 3-5 months of age. By 10 months of age, approximately 70% of the mice had died. Pathological studies revealed that the heart-specific Rce1 knockout mice had a dilated cardiomyopathy. By contrast, liver-specific Rce1 knockout mice appeared healthy, had normal transaminase levels, and had normal liver histology. These studies indicate that the endoproteolytic processing of CAAX proteins is essential for cardiac function but is less important for the liver.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Endopeptidases/deficiência , Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , DNA Complementar/genética , Endopeptidases/genética , Endopeptidases/fisiologia , Fígado/enzimologia , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Proteínas/química , Proteínas/genética
6.
J Biol Chem ; 277(49): 47701-8, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12361952

RESUMO

Phosphatidylserine synthase 1 (Pss1) and phosphatidylserine synthase 2 (Pss2) produce phosphatidylserine by exchanging serine for the head groups of other phospholipids. Pss1 and Pss2 are structurally similar (approximately 32% amino acid identity) but differ in their substrate specificities, with Pss1 using phosphatidylcholine for the serine exchange reaction and Pss2 using phosphatidylethanolamine. Whether Pss1 and Pss2 are both required for mammalian growth and development is not known, and no data exist on the relative contributions of the two enzymes to serine exchange activities in different tissues. To address those issues and also to define the cell type-specific expression of Pss2, we generated Pss2-deficient mice in which a beta-galactosidase marker is expressed from Pss2 regulatory sequences. Histologic studies of Pss2-deficient mice revealed very high levels of beta-galactosidase expression in Sertoli cells of the testis and high levels of expression in brown fat, neurons, and myometrium. The ability of testis extracts from Pss2-deficient mice to catalyze serine exchange was reduced by more than 95%; reductions of approximately 90% were noted in the brain and liver. However, we found no perturbations in the phospholipid content of any of these tissues. As judged by Northern blots, the expression of Pss1 was not up-regulated in Pss2-deficient cells and tissues. Testis weight was reduced in Pss2-deficient mice, and some of the male mice were infertile. We conclude that Pss2 is responsible for the majority of serine exchange activity in in vitro assays, but a deficiency in this enzyme does not cause perturbations in phospholipid content or severe developmental abnormalities.


Assuntos
Transferases de Grupos Nitrogenados/fisiologia , Animais , Northern Blotting , Células CHO , Células Cultivadas , Cricetinae , DNA Complementar/metabolismo , Feminino , Fibroblastos/metabolismo , Hormônio Foliculoestimulante/sangue , Metabolismo dos Lipídeos , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Neurônios/metabolismo , Transferases de Grupos Nitrogenados/genética , Tamanho do Órgão , Fosfatidilserinas/metabolismo , RNA/metabolismo , Testículo/metabolismo , Testículo/patologia , Fatores de Tempo , Distribuição Tecidual , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...