Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Front Pediatr ; 10: 971073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245744

RESUMO

Rationale: Thymic stromal lymphopoietin (TSLP) is increasingly recognized as a key molecule in asthma pathogenesis and as a promising therapeutic target in adults. In contrast, in asthmatic children the clinical relevance of TSLP secretion in the lower airways has been remarkably understudied. We tested the hypothesis that pulmonary TSLP levels in asthmatic children correlate with clinical severity, airway inflammation and lower airway obstruction. Methods: Bronchoalveolar lavage (BAL) samples and relevant clinical data were collected from asthmatic children undergoing clinically indicated bronchoscopy at Children's National Hospital in Washington D.C. Protein levels of TSLP, IL-5, IL-1ß, and IL-33 were quantified in BAL at baseline and correlated with individual severity and clinical features including spirometry, serum IgE and eosinophils, BAL neutrophil and eosinophil counts. Results: We enrolled a total of 35 asthmatic children (median age: 9 years). Pediatric subjects with severe asthma had greater TSLP BAL levels at baseline relative to mild or moderate asthmatic subjects (p = 0.016). Asthmatic children with the highest TSLP levels (>75th percentile) had higher IL-5 and IL-1ß BAL levels and greater lower airway obstruction (lower FEV1/FVC ratios). Conclusion: Our study demonstrates for the first time that higher pulmonary TSLP levels obtained at baseline are linked to asthma disease severity in a subset of children. These data indicate that TSLP may play a key role in the pathogenesis of pediatric asthma and thus provide initial support to investigate the potential use of anti-TSLP biologics to treat severe uncontrolled asthmatic children.

4.
PLoS One ; 15(5): e0233352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442188

RESUMO

BACKGROUND: MicroRNAs (miRs) control gene expression and the development of the immune system and antiviral responses. MiR-155 is an evolutionarily-conserved molecule consistently induced during viral infections in different cell systems. Notably, there is still an unresolved paradox for the role of miR-155 during viral respiratory infections. Despite being essential for host antiviral TH1 immunity, miR-155 may also contribute to respiratory disease by enhancing allergic TH2 responses and NFkB-mediated inflammation. The central goal of this study was to define how airway miR-155 production is related to TH1, TH2, and pro-inflammatory cytokine responses during naturally occurring viral respiratory infections in young children. METHODS: Normalized nasal airway levels of miR-155 and nasal protein levels of IFN-γ, TNF-α, IL-1ß, IL-13, IL-4 were quantified in young children (≤2 years) hospitalized with viral respiratory infections and uninfected controls. These data were linked to individual characteristics and respiratory disease parameters. RESULTS: A total of 151 subjects were included. Increased miR-155 levels were observed in nasal samples from patients with rhinovirus, RSV and all respiratory viruses analyzed. High miR-155 levels were strongly associated with high IFN-γ production, increased airway TH1 cytokine polarization (IFN-γ/IL-4 ratios) and increased pro-inflammatory responses. High airway miR-155 levels were linked to decreased respiratory disease severity in individuals with high airway TH1 antiviral responses. CONCLUSIONS: The airway secretion of miR-155 during viral respiratory infections in young children is associated with enhanced antiviral immunity (TH1 polarization). Further studies are needed to define additional physiological roles of miR-155 in the respiratory tract of human infants and young children during health and disease.


Assuntos
Citocinas/metabolismo , MicroRNAs/metabolismo , Sistema Respiratório/metabolismo , Infecções Respiratórias/metabolismo , Citocinas/genética , Feminino , Humanos , Lactente , Masculino , MicroRNAs/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Sistema Respiratório/virologia , Infecções Respiratórias/genética , Infecções Respiratórias/virologia , Rhinovirus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA