Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(11): 115001, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798346

RESUMO

We report on a precision energy loss measurement and theoretical investigation of 100 keV/u helium ions in a hydrogen-discharge plasma. Collision processes of helium ions with protons, free electrons, and hydrogen atoms are ideally suited for benchmarking plasma stopping-power models. Energy loss results of our experiments are significantly higher than the predictions of traditional effective charge models. We obtained good agreement with our data by solving rate equations, where in addition to the ground state, also excited electronic configurations were considered for the projectile ions. Hence, we demonstrate that excited projectile states, resulting from collisions, leading to capture-, ionization-, and radiative-decay processes, play an important role in the stopping process in plasma.

2.
Phys Rev Lett ; 119(20): 204801, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219328

RESUMO

A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the H_{ß} line preliminarily defines the plasma with a free electron density of (1.9±0.1)×10^{16} cm^{-3} and a free electron temperature of 0.8-1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×10^{16} to 7.8×10^{18} cm^{-3}. A 108 MHz pulsed beam of ^{48}Ca^{10+} with a velocity of 3.652 MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×10^{17} cm^{-3}, and the free electron temperature can be precisely derived as 1.01±0.04 eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA