Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 280(6): L1335-47, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11350815

RESUMO

Vascular immunotargeting is a mean for a site-selective delivery of drugs and genes to endothelium. In this study, we compared recognition of pulmonary and systemic vessels in rats by candidate carrier monoclonal antibodies (MAbs) to endothelial antigens platelet endothelial cell adhesion molecule (PECAM)-1 (CD31), intercellular adhesion molecule (ICAM)-1 (CD54), Thy-1.1 (CD90.1), angiotensin-converting enzyme (ACE; CD143), and OX-43. Tissue immunostaining showed that endothelial cells were Thy-1.1 positive in capillaries but negative in large vessels. In the lung, anti-ACE MAb provided a positive staining in 100% capillaries vs. 5-20% capillaries in other organs. Other MAbs did not discriminate between pulmonary and systemic vessels. We determined tissue uptake after infusion of 1 microg of (125)I-labeled MAbs in isolated perfused lungs (IPL) or intravenously in intact rats. Uptake in IPL attained 46% of the injected dose (ID) of anti-Thy-1.1 and 20-25% ID of anti-ACE, anti-ICAM-1, and anti-OX-43 (vs. 0.5% ID of control IgG). However, after systemic injection at this dose, only anti-ACE MAb 9B9 displayed selective pulmonary uptake (16 vs. 1% ID/g in other organs). Anti-OX-43 displayed low pulmonary (0.5% ID/g) but significant splenic and cardiac uptake (7 and 2% ID/g). Anti-Thy-1.1 and anti-ICAM-1 displayed moderate pulmonary (4 and 6% ID/g, respectively) and high splenic and hepatic uptake (e.g., 18% ID/g of anti-Thy-1.1 in spleen). The lung-to-blood ratio was 5, 10, and 15 for anti-Thy-1.1, anti-ACE, and anti-ICAM-1, respectively. PECAM antibodies displayed low pulmonary uptake in perfusion (2% ID) and in vivo (3-4% ID/g). However, conjugation with streptavidin (SA) markedly augmented pulmonary uptake of anti-PECAM in perfusion (10-54% ID, depending on an antibody clone) and in vivo (up to 15% ID/g). Therefore, ACE-, Thy-1.1-, ICAM-1-, and SA-conjugated PECAM MAbs are candidate carriers for pulmonary targeting. ACE MAb offers a high selectivity of pulmonary targeting in vivo, likely because of a high content of ACE-positive capillaries in the lungs.


Assuntos
Anticorpos Monoclonais/metabolismo , Endotélio Vascular/metabolismo , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Especificidade de Anticorpos , Antígenos de Diferenciação/metabolismo , Capilares/citologia , Capilares/metabolismo , Endotélio Vascular/citologia , Imuno-Histoquímica , Injeções Intravenosas , Molécula 1 de Adesão Intercelular/metabolismo , Radioisótopos do Iodo , Pulmão/citologia , Masculino , Peptidil Dipeptidase A/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Antígenos Thy-1/metabolismo , Distribuição Tecidual
2.
Mol Ther ; 2(6): 562-78, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11124057

RESUMO

Adenoviral (Ad) vectors are promising gene therapy vehicles due to their in vivo stability and efficiency, but their potential utility is compromised by their restricted tropism. Targeting strategies have been devised to improve the efficacy of these agents, but specific targeting following in vivo systemic administration of vector has not previously been demonstrated. The distinct aim of the current study was to determine whether an Ad-targeting strategy could maintain fidelity upon systemic vascular administration. We used a bispecific antibody to target Ad infection specifically to angiotensin-converting enzyme (ACE), which is preferentially expressed on pulmonary capillary endothelium and which may thus enable gene therapy for pulmonary vascular disease. Cell-specific gene delivery to ACE-expressing cells was first confirmed in vitro. Administration of retargeted vector complex via tail vein injection into rats resulted in at least a 20-fold increase in both Ad DNA localization and luciferase transgene expression in the lungs, compared to the untargeted vector. Furthermore, targeting led to reduced transgene expression in nontarget organs, especially the liver, where the reduction was over 80%. Immunohistochemical and immunoelectron microscopy analysis confirmed that the pulmonary transgene expression was specifically localized to endothelial cells. Enhancement of transgene expression in the lungs as a result of the ACE-targeting strategy was also confirmed using a new noninvasive imaging technique. This study shows that a retargeting approach can indeed specifically modify the gene delivery properties of an Ad vector given systemically and thus has encouraging implications for the further development of targetable, injectable Ad vectors.


Assuntos
Adenoviridae/genética , Vetores Genéticos , Pulmão/metabolismo , Células 3T3 , Animais , Sequência de Bases , Células CHO , Cricetinae , Primers do DNA , Endotélio/enzimologia , Endotélio/metabolismo , Endotélio/ultraestrutura , Imuno-Histoquímica , Pulmão/enzimologia , Pulmão/ultraestrutura , Camundongos , Microscopia Eletrônica , Peptidil Dipeptidase A/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA