Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 600371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633759

RESUMO

Drought is a leading abiotic constraints for onion production globally. Breeding by using unique genetic resources for drought tolerance is a vital mitigation strategy. With a total of 100 onion genotypes were screened for drought tolerance using multivariate analysis. The experiment was conducted in a controlled rainout shelter for 2 years 2017-2018 and 2018-2019 in a randomized block design with three replications and two treatments (control and drought stress). The plant was exposed to drought stress during the bulb development stage (i.e., 50-75 days after transplanting). The genotypes were screened on the basis of the drought tolerance efficiency (DTE), percent bulb yield reduction, and results of multivariate analysis viz. hierarchical cluster analysis by Ward's method, discriminate analysis and principal component analysis. The analysis of variance indicated significant differences among the tested genotypes and treatments for all the parameters studied, viz. phenotypic, physiological, biochemical, and yield attributes. Bulb yield was strongly positively correlated with membrane stability index (MSI), relative water content (RWC), total chlorophyll content, antioxidant enzyme activity, and leaf area under drought stress. The genotypes were categorized into five groups namely, highly tolerant, tolerant, intermediate, sensitive, and highly sensitive based on genetic distance. Under drought conditions, clusters II and IV contained highly tolerant and highly sensitive genotypes, respectively. Tolerant genotypes, viz. Acc. 1656, Acc. 1658, W-009, and W-085, had higher DTE (>90%), fewer yield losses (<20%), and performed superiorly for different traits under drought stress. Acc. 1627 and Acc. 1639 were found to be highly drought-sensitive genotypes, with more than 70% yield loss. In biplot, the tolerant genotypes (Acc. 1656, Acc. 1658, W-085, W-009, W-397, W-396, W-414, and W-448) were positively associated with bulb yield, DTE, RWC, MSI, leaf area, and antioxidant enzyme activity under drought stress. The study thus identified tolerant genotypes with favorable adaptive traits that may be useful in onion breeding program for drought tolerance.

2.
Front Plant Sci ; 12: 727262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069612

RESUMO

Onion production is severely affected by waterlogging conditions, which are created due to heavy rainfall. Hence, the identification of waterlogging-tolerant onion genotypes is crucial for increasing onion production. In the present study, 100 distinct onion genotypes were screened for waterlogging tolerance under artificial conditions by using the phenotypic approach in the monsoon season of 2017. Based on plant survival and recovery and changes in bulb weight, we identified 19 tolerant, 27 intermediate tolerant, and 54 highly sensitive onion genotypes. The tolerant genotypes exhibited higher plant survival and better recovery and bulb size, whereas sensitive genotypes exhibited higher plant mortality, poor recovery, and small bulb size under waterlogging conditions. Furthermore, a subset of 12 contrasting genotypes was selected for field trials during monsoon seasons 2018 and 2019. Results revealed that considerable variation in the morphological, physiological, and yield characteristics were observed across the genotypes under stress conditions. Waterlogging-tolerant genotypes, namely, Acc. 1666, Acc. 1622, W-355, W-208, KH-M-2, and RGP-5, exhibited higher plant height, leaf number, leaf area, leaf length, chlorophyll content, membrane stability index (MSI), pyruvic acid, antioxidant content, and bulb yield than sensitive genotypes under stress conditions. Furthermore, the principal component analysis biplot revealed a strong association of leaf number, leaf area, chlorophyll content, MSI, and bulb yield with tolerant genotypes under stress conditions. The study indicates that the waterlogging-tolerant onion genotypes with promising stress-adaptive traits can be used in plant breeding programs for developing waterlogging-tolerant onion varieties.

3.
PeerJ ; 8: e9824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974094

RESUMO

BACKGROUND: The genus Allium (Family: Amaryllidaceae) is an economically important group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are also well known for their nutraceutical properties. Among alliums, onion, garlic, leek, and chives cultivated worldwide. Despite their substantial economic and medicinal importance, the genome sequence of any of the Allium is not available, probably due to their large genome sizes. Recently evolved omics technologies are highly efficient and robust in elucidating molecular mechanisms of several complex life processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, metagenomics, etc. have the potential to open new avenues in research and improvement of allium crops where genome sequence information is limited. A significant amount of data has been generated using these technologies for various Allium species; it will help in understanding the key traits in Allium crops such as flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance at molecular and metabolite level. This information will ultimately assist us in speeding up the breeding in Allium crops. METHOD: In the present review, major omics approaches, and their progress, as well as potential applications in Allium crops, could be discussed in detail. RESULTS: Here, we have discussed the recent progress made in Allium research using omics technologies such as genomics, transcriptomics, micro RNAs, proteomics, metabolomics, and metagenomics. These omics interventions have been used in alliums for marker discovery, the study of the biotic and abiotic stress response, male sterility, organ development, flavonoid and bulb color, micro RNA discovery, and microbiome associated with Allium crops. Further, we also emphasized the integrated use of these omics platforms for a better understanding of the complex molecular mechanisms to speed up the breeding programs for better cultivars. CONCLUSION: All the information and literature provided in the present review throws light on the progress and potential of omics platforms in the research of Allium crops. We also mentioned a few research areas in Allium crops that need to be explored using omics technologies to get more insight. Overall, alliums are an under-studied group of plants, and thus, there is tremendous scope and need for research in Allium species.

4.
PLoS One ; 15(8): e0237457, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780764

RESUMO

Onion (Allium cepa L.) is an important vegetable crop widely grown for diverse culinary and nutraceutical properties. Being a shallow-rooted plant, it is prone to drought. In the present study, transcriptome sequencing of drought-tolerant (1656) and drought-sensitive (1627) onion genotypes was performed to elucidate the molecular basis of differential response to drought stress. A total of 123206 and 139252 transcripts (average transcript length: 690 bases) were generated after assembly for 1656 and 1627, respectively. Differential gene expression analyses revealed upregulation and downregulation of 1189 and 1180 genes, respectively, in 1656, whereas in 1627, upregulation and downregulation of 872 and 1292 genes, respectively, was observed. Genes encoding transcription factors, cytochrome P450, membrane transporters, and flavonoids, and those related to carbohydrate metabolism were found to exhibit a differential expression behavior in the tolerant and susceptible genotypes. The information generated can facilitate a better understanding of molecular mechanisms underlying drought response in onion.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Cebolas/genética , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica/métodos , Genótipo , Proteínas de Membrana Transportadoras/genética , RNA de Plantas/química , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
5.
PLoS One ; 14(9): e0223281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31568480

RESUMO

The gut microbial community structure of adult Thrips tabaci collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with Thrips tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. Alpha-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of T. tabaci samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with T. tabaci. The location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.


Assuntos
Actinobacteria/genética , Bacteroidetes/genética , Cianobactérias/genética , Firmicutes/genética , Microbioma Gastrointestinal/genética , Proteobactérias/genética , Tisanópteros/microbiologia , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Firmicutes/classificação , Firmicutes/isolamento & purificação , Variação Genética , Índia , Filogenia , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Simbiose/genética , Nicotiana/parasitologia , Wolbachia/classificação , Wolbachia/genética , Wolbachia/isolamento & purificação
6.
Ecol Evol ; 8(13): 6399-6419, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038744

RESUMO

Thrips tabaci Lindeman is an important polyphagous insect pest species estimated to cause losses of more than U.S. $1 billion worldwide annually. Chemical insecticides are of limited use in the management of T. tabaci due to the thigmokinetic behavior and development of resistance to insecticides. There is an urgent need to find alternative management strategies. Small noncoding RNAs (sncRNAs) especially microRNAs (miRNAs) hold great promise as key regulators of gene expression in a wide range of organisms. MiRNAs are a group of endogenously originated sncRNA known to regulate gene expression in animals, plants, and protozoans. In this study, we explored these RNAs in T. tabaci using deep sequencing to provide a basis for future studies of their biological and physiological roles in governing gene expression. Apart from snoRNAs and piRNAs, our study identified nine novel and 130 known miRNAs from T. tabaci. Functional classification of the targets for these miRNAs predicted that majority are involved in regulating transcription, translation, signal transduction and genetic information processing. The higher expression of few miRNAs (such as tta-miR-281, tta-miR-184, tta-miR-3533, tta-miR-N1, tta-miR-N7, and tta-miR-N9) in T. tabaci pupal and adult stages reflected their possible role in larval and adult development, metamorphosis, parthenogenesis, and reproduction. This is the first exploration of the miRNAome in T. tabaci, which not only provides insights into their possible role in insect metamorphosis, growth, and development but also offer an important resource for future pest management strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...