Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38998735

RESUMO

Titania nanoparticles (NPs) find wide application in photocatalysis, photovoltaics, gas sensing, lithium batteries, etc. One of the most important synthetic challenges is maintaining control over the polymorph composition of the prepared nanomaterial. In the present work, TiO2 NPs corresponding to anatase, rutile, or an anatase/rutile/brookite mixture were obtained at 80 °C by an inverse microemulsion method in a ternary system of water/cetyltrimethylammonium bromide/1-hexanol in a weight ratio of 17:28:55. The only synthesis variables were the preparation of the aqueous component and the nature of the Ti precursor (Ti(IV) ethoxide, isopropoxide, butoxide, or chloride). The materials were characterized with X-ray diffraction, scanning/transmission electron microscopy, N2 adsorption-desorption isotherms, FTIR and Raman vibrational spectroscopies, and diffuse reflectance spectroscopy. The synthesis products differed significantly not only in phase composition, but also in crystallinity, textural properties, and adsorption properties towards water. All TiO2 NPs were active in the photocatalytic decomposition of rhodamine B, a model dye pollutant of wastewater streams. The mixed-phase anatase/rutile/brookite nanopowders obtained from alkoxy precursors showed the best photocatalytic performance, comparable to or better than the P25 reference. The exceptionally high photoactivity was attributed to the advantageous electronic effects known to accompany multiphase titania composition, namely high specific surface area and strong surface hydration. Among the single-phase materials, anatase samples showed better photoactivity than rutile ones, and this effect was associated, primarily, with the much higher specific surface area of anatase photocatalysts.

2.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329522

RESUMO

A new approach to acid activation of raw Ca-bentonite was explored. The method consisted in dehydration of clay by thermal pretreatment at 200 °C, followed by immediate impregnation with H2SO4 solution. The acid concentration was 1.5 × or 2.0 × cation exchange capacity (CEC) of clay. The volume of the liquid was adjusted so as to leave the material in the apparently dry state. Structural evolution of the activated solids after 1, 2, 3, and 4 weeks of storage was monitored with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning nuclear magnetic resonance (MAS NMR), and chemical analysis. In the macroscopically dry solids, the rehydrated interlayer Ca2+ underwent rapid exchange with H3O+ and formed extra-framework gypsum. Acid attack on montmorillonite structure resulted in continuous removal of layer forming Mg, Al, and Fe cations, with Mg2+ being eliminated most efficiently. No significant damage to the montmorillonite lattice was observed. Al was extracted both from the tetrahedral and the octahedral sheets. Under less acidic conditions, the monohydrated H-montmorillonite changed upon storage to bi-hydrated form, as a result of clay auto-transformation. Higher concentrations of acid in the pore network of clay stabilized the H-form of montmorillonite. The data indicate that compositional transformation of acid impregnated bentonite extended beyond the one month of aging investigated in the present work.

3.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947218

RESUMO

A new method of Na-activation of raw bentonite, rich in Ca-montmorillonite, consisting of combined thermal treatment at 200 °C, followed by immediate impregnation with aqueous solution of Na2CO3 of concentration corresponding to 0.5, 1.0, 1.5, or 2.0 cation exchange capacity (CEC) of clay, was investigated. Structural and compositional evolution of the activated solids after 1, 2, 3, and 4 weeks of storage was monitored by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD analysis indicated that within the investigated period of ageing transformation to Na-rich montmorillonite required Na2CO3 concentration of at least 1.0 CEC. FTIR spectra showed that, depending on the Na2CO3 concentration and ageing time, formation of Na-rich montmorillonite was accompanied by precipitation of poorly crystalline calcite, amorphous calcium carbonate, gaylussite (a double calcium-sodium carbonate), and portlandite (Ca(OH)2).

4.
Materials (Basel) ; 13(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947936

RESUMO

This work aimed to determine the effect of various amounts of P admixtures in synthetic ferrihydrite on its thermal stability, transformation processes, and the properties of the products, at a broad range of temperatures up to 1000 °C. A detailed study was conducted using a series of synthetic ferrihydrites Fe5HO8·4H2O doped with phosphates at P/Fe molar ratios of 0.2, 0.5, and 1.0. Ferrihydrite was synthesized by a reaction of Fe2(SO4)3 with 1 M KOH at room temperature in the presence of K2HPO4 at pH 8.2. The products of the synthesis and the products of heating were characterized at various stages of transformation by using differential thermal analysis accompanied with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. Coprecipitation of P with ferrihydrite results in the formation of P-doped 2-line ferrihydrite. A high P content reduces crystallinity. Phosphate significantly inhibits the thermal transformation processes. The temperature of thermal transformation increases from below 550 to 710-750 °C. Formation of intermediate maghemite and Fe-phosphates, is observed. The product of heating up to 1000 °C contains hematite associated with rodolicoite FePO4 and grattarolaite Fe3PO7. Higher P content greatly increases the thermal stability and transformation temperature of rodolicoite as well.

5.
Materials (Basel) ; 12(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586860

RESUMO

Structural characteristics of hydrolysates formed from the aqueous Ti-, Zr-, and Ti, Zr-pillaring solutions prepared from inorganic precursors (TiCl4 and ZrOCl2), was investigated and compared with that of precipitates obtained from the same solutions after a slight alkalization of pH to the values reported for the conditions of clay pillaring. The materials were recovered by lyophilization and subsequently subjected to calcination at 500, 800 and 1000 °C. Of special interest was the effect of pH on the possible formation of mixed Ti, Zr-oxide species. Powder X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) analysis showed that even a relatively moderate alteration of pH in Ti-, Zr-, or Ti, Zr-precursor solutions caused substantial changes in the outcome of hydrolytic transformations, manifested by different phase and/or chemical composition of the resulting hydrolysates. Analysis of thermal evolution of hydrolysates showed that alkalization facilitated the transformation of anatase into rutile in materials obtained from Ti-pillaring solution, but retarded tetragonal to monoclinic zirconia conversion in samples derived from Zr-pillaring agent. The most striking effect was observed for the mixed Ti, Zr-pillaring solution, where an increase of pH enabled the formation of zirconium titanate as the only crystalline phase, rather than a multiphase mixture of anatase, monoclinic zirconia and zirconium titanate obtained from the more acidic precursor. The finding supports the model of mixed Ti-O-Zr network in props generated in Ti, Zr-pillared montmorillonites.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29126009

RESUMO

Agates from Plóczki Górne hosted by Permian basaltic rocks are predominantly made of length-fast chalcedony, and subordinately megaquartz and quartzine. Moganite occurs in traces mainly in transparent, outer, darker regions of white-grey coloured agates. Silica matrix of agates comprises a wide variety of solid inclusions represented by celadonite, plagioclases, hematite, goethite, barite, calcite, heulandite-clinoptyloite, nontronite-saponite, and Mn-dioxides (ramsdellite). Mineral phases are locally accompanied by black aggregations of carbonaceous matter, which gives a Raman signature of disordered carbon. These organic components were probably deposited from a hydrothermal fluids at low-temperature conditions and originated from sedimentary rocks found in the surrounding area of Plóczki Górne. The abundance of various SiO2 phases, mineral inclusions as well as various micro-textures (colloform, comb, feathery, and jigsaw-puzzle) in agates resulted from physicochemical fluctuations of SiO2-bearing mineralizing solutions at various stages of these gems formation. Agates from Plóczki Górne formed during post-magmatic stage of basaltic host rocks evolution. Not only were the hydrothermal fluids enriched in silica, but also they contained other elements such as Na, Ca, Al, Mg, Mn, Fe, Ba, SO4, and CO2, which were mobilized from host rocks or surrounding area.

7.
Materials (Basel) ; 10(11)2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-29156598

RESUMO

A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N2 adsorption/desorption at -196 °C, and H2 TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO2 component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH3 (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO2/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO2/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA