Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(16): e202401103, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412017

RESUMO

Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.

2.
Nature ; 623(7989): 922-924, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38030774
3.
Angew Chem Int Ed Engl ; 61(10): e202116897, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995402

RESUMO

New strategies for synthesizing polyyne polyrotaxanes are being developed as an approach to stable carbyne "insulated molecular wires". Here we report an active metal template route to polyyne [3]rotaxanes, using dicobalt carbonyl masked alkyne equivalents. We synthesized two [3]rotaxanes, both with the same C28 polyyne dumbbell component, one with a phenanthroline-based macrocycle and one using a 2,6-pyridyl cycloparaphenylene nanohoop. The thermal stabilities of the two rotaxanes were compared with that of the naked polyyne dumbbell in decalin at 80 °C, and the nanohoop rotaxane was found to be 4.5 times more stable.

4.
Angew Chem Int Ed Engl ; 60(11): 5941-5947, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33253464

RESUMO

Polyyne polyrotaxanes, encapsulated cyclocarbon catenanes and other fascinating mechanically interlocked carbon-rich architectures should become accessible if masked alkyne equivalents (MAEs) can be developed that are large enough to prevent unthreading of a macrocycle, and that can be cleanly unmasked under mild conditions. Herein, we report the synthesis of a new bulky MAE based on t-butylbicyclo[4.3.1]decatriene. This MAE was used to synthesize a polyyne [2]rotaxane and a masked-polyyne [3]rotaxane by Cadiot-Chodkiewicz coupling. Glaser cyclo-oligomerization of the [2]rotaxane gave masked cyclocarbon catenanes. The unmasking behavior of the catenanes and rotaxanes was tested by photolysis at a range of UV wavelengths. Photochemical unmasking did not proceed cleanly enough to prepare extended encapsulated polyyne polyrotaxanes. We highlight the scope and challenges involved with this approach to interlocked carbon-rich architectures.

5.
J Am Chem Soc ; 142(30): 12921-12924, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32646214

RESUMO

Cyclo[18]carbon (C18, a molecular carbon allotrope) can be synthesized by dehalogenation of a bromocyclocarbon precursor, C18Br6, in 64% yield, by atomic manipulation on a sodium chloride bilayer on Cu(111) at 5 K, and imaged by high-resolution atomic force microscopy. This method of generating C18 gives a higher yield than that reported previously from the cyclocarbon oxide C24O6. The experimental images of C18 were compared with simulated images for four theoretical model geometries, including possible bond-angle alternation: D18h cumulene, D9h polyyne, D9h cumulene, and C9h polyyne. Cumulenic structures, with (D9h) and without (D18h) bond-angle alternation, can be excluded. Polyynic structures, with (C9h) and without (D9h) bond-angle alternation, both show a good agreement with the experiment and are challenging to differentiate.

6.
J Am Chem Soc ; 142(31): 13523-13532, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32589030

RESUMO

Bulky photolabile masked alkyne equivalents (MAEs) are needed for the synthesis of polyyne polyrotaxanes, as insulated molecular wires and as stabilized forms of the linear polymeric allotrope of carbon, carbyne. We have synthesized a novel MAE based on phenanthrene and compared it with an indane-based MAE. Photochemical unmasking of model compounds was studied at different wavelengths (250 and 350 nm), and key products were identified by NMR spectroscopy and X-ray crystallography. UV irradiation at 250 nm leads to unmasking of both MAEs. Irradiation of the phenanthrene system at 350 nm results in quantitative dimerization via [2 + 2] cycloaddition to form a [3]-ladderane; irradiation of this ladderane at 250 nm generates a dihydrotriphenylene, which can be oxidized easily to a triphenylene. Irradiation of the indane-based MAE at 350 nm in the presence of traces of oxygen forms an endoperoxide and a bisepoxide. Both MAEs have been incorporated into rotaxanes via copper-mediated active metal template Glaser or Cadiot-Chodkiewicz coupling. The identity of the rotaxanes was confirmed by NMR spectroscopy and mass spectrometry. The phenanthrene rotaxane decomposes during attempted photochemical unmasking, whereas photolysis of the indane rotaxane results in unmasking of the polyyne thread to form a rotaxane with a chain of 16 sp-hybridized carbon atoms. This approach opens avenues toward the synthesis of encapsulated carbon allotropes.


Assuntos
Poli-Inos/química , Rotaxanos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
7.
Science ; 365(6459): 1299-1301, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31416933

RESUMO

Carbon allotropes built from rings of two-coordinate atoms, known as cyclo[n]carbons, have fascinated chemists for many years, but until now they could not be isolated or structurally characterized because of their high reactivity. We generated cyclo[18]carbon (C18) using atom manipulation on bilayer NaCl on Cu(111) at 5 kelvin by eliminating carbon monoxide from a cyclocarbon oxide molecule, C24O6 Characterization of cyclo[18]carbon by high-resolution atomic force microscopy revealed a polyynic structure with defined positions of alternating triple and single bonds. The high reactivity of cyclocarbon and cyclocarbon oxides allows covalent coupling between molecules to be induced by atom manipulation, opening an avenue for the synthesis of other carbon allotropes and carbon-rich materials from the coalescence of cyclocarbon molecules.

8.
Nat Chem ; 10(8): 853-858, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967394

RESUMO

Rearrangements that change the connectivity of a carbon skeleton are often useful in synthesis, but it can be difficult to follow their mechanisms. Scanning probe microscopy can be used to manipulate a skeletal rearrangement at the single-molecule level, while monitoring the geometry of reactants, intermediates and final products with atomic resolution. We studied the reductive rearrangement of 1,1-dibromo alkenes to polyynes on a NaCl surface at 5 K, a reaction that resembles the Fritsch-Buttenberg-Wiechell rearrangement. Voltage pulses were used to cleave one C-Br bond, forming a radical, then to cleave the remaining C•-Br bond, triggering the rearrangement. These experiments provide structural insight into the bromo-vinyl radical intermediates, showing that the C=C•-Br unit is nonlinear. Long polyynes, up to the octayne Ph-(C≡C)8-Ph, have been prepared in this way. The control of skeletal rearrangements opens a new window on carbon-rich materials and extends the toolbox for molecular synthesis by atom manipulation.

9.
J Org Chem ; 83(4): 2077-2086, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29359550

RESUMO

Extended triisopropylsilyl end-capped polyynes have been prepared from the corresponding tetracobalt complexes by removing the complexed dicobalt tetracarbonyldiphenylphosphinomethane (Co2(CO)4dppm) moieties. Unmasking of this "masked alkyne equivalent" was achieved under mild conditions with elemental iodine at room temperature, making it possible to obtain fragile polyynes with up to 20 contiguous sp-hybridized carbon atoms. The Co2(CO)4dppm moiety has a strong geometric and steric effect on the polyyne but does not have a marked electronic effect on the terminal alkyne, as indicated by NMR and IR spectroscopy, density functional theory calculations, and X-ray crystallography. An unusual "alkyne hopping" migration of the dicobalt group was noticed as a minor side reaction during copper-catalyzed Eglinton coupling.

10.
Chemistry ; 24(1): 159-168, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29139153

RESUMO

A four-step synthesis of substituted 5,11-dicyano-6,12-diaryltetracenes was developed, starting from readily available para-substituted benzophenones. The key step of this straightforward route is the complex cascade reaction between tetraaryl[3]cumulenes and tetracyanoethene (TCNE) resulting in 5,5,11,11-tetracyano-5,11-dihydrotetracenes. The mechanism of this transformation was reinvestigated by means of theoretical calculations. The target tetracenes were obtained by a newly developed decyanation/aromatization reaction catalyzed by CuI or CuII complexes in solution, conditions compatible with a broad range of functional groups. A computational mechanistic study sheds light on this transformation. Structures of all tetracene derivatives were confirmed by X-ray crystallography. The presented dicyanotetracene derivatives exhibit outstanding optoelectronic properties and enhanced photostability, significantly surpassing the reference rubrene (5,6,11,12-tetraphenyltetracene).

11.
Org Biomol Chem ; 15(4): 947-956, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28054076

RESUMO

Pyropheophorbide-a methyl ester (PPa-OMe) has been modified by attaching electron-donor and -acceptor groups to alter its linear and nonlinear optical properties. Regioselective bromination of the terminal vinyl position and Suzuki coupling were used to attach a 4-(N,N-diethylaminophenyl) electron-donor group. The electron-acceptor dicyanomethylene was attached at the cyclic ketone position through a Knoevenagel condensation. Four different derivatives of PPa-OMe, containing either electron-donor or electron-acceptor groups, or both, were converted to hydrophilic bis-TEG amides to generate a series of amphiphilic dyes. The absorption and emission properties of all the dyes were compared to a previously reported push-pull type porphyrin-based dye and a commercial push-pull styryl dye, FM4-64. Electrochemical measurements reveal that the electron donor group causes a greater decrease in HOMO-LUMO gap than the electron-acceptor. TD-DFT calculations on optimized geometries (DFT) of all four dyes show that the HOMO is mostly localized on the donor, 4-(N,N-diethylaminophenyl), while the LUMO is distributed around the chlorin ring and the electron-acceptor. Hyper-Rayleigh scattering experiments show that the first-order hyperpolarizabilities of the dyes increase on attaching either electron-donor or -acceptor groups, having the highest value when both the donor and acceptor groups are attached. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) images of the bis-TEG amide attached dyes in lipid monolayer-coated droplets of water-in-oil reveal that the TPEF and SHG involve transition dipole moments in different orientations.

12.
Angew Chem Int Ed Engl ; 54(30): 8679-83, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26097009

RESUMO

Thin films of 5,11-dicyano-6,12-diphenyltetracene (TcCN) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)-E(S1)=-0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet-state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.

13.
Chemistry ; 21(16): 6215-25, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25765373

RESUMO

A variety of asymmetrically donor-acceptor-substituted [3]cumulenes (buta-1,2,3-trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG(≠) were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol(-1) , in the range of the barriers for rotation around sterically hindered single bonds. The central C=C bond of the push-pull-substituted [3]cumulene moiety is shortened down to 1.22 Šas measured by X-ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor-acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition-retroelectrocyclization (CA-RE) cascade characteristic of donor-polarized acetylenes.

14.
Angew Chem Int Ed Engl ; 53(17): 4341-5, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24664956

RESUMO

A versatile, two-step synthesis of highly substituted, cyano-functionalized diaryltetracenes has been developed, starting from easily accessible tetraaryl[3]cumulenes. This unprecedented transformation is initiated by [2+2] cycloaddition of tetracyanoethylene (TCNE) to the proacetylenic central double bond of the cumulenes to give an intermediate zwitterion, which after an electrocyclization cascade and dehydrogenation yields 5,5,11,11-tetracyano-5,11-dihydrotetracenes in a one-pot procedure. A subsequent copper-assisted decyanation/aromatization provided the target 5,11-dicyano-6,12-diaryltetracene derivatives. All of the postulated structures were confirmed by X-ray crystallography. The new chromophores are thermally highly stable and feature promising fluorescence properties for potential use in optoelectronic devices. They are selective chemosensors for Cu(I) ions, which coordinate to one of the CN substituents and form a 1:1 complex with an association constant of Ka =1.5×10(5)  L mol(-1) at 298 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...