Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368658

RESUMO

Various 2-phenyl-3,6-pyridazinedione derivatives 4a-j, 5a-c, 6a,b, 7a-c, 8, 9, 10a-d, and 11a-d, were effectivelysynthesized, and tested for their potential inhibition of phosphodiesterase enzyme at 10 µM. Then fourteen compounds exhibiting the highest inhibition 4b, 4d, 4e, 4g, 4h, 4i, 5a, 6a,b, 7c, 10a,b, 11a, and 11d were selected for screening their PDE-5 inhibition, where compounds 4b,g,h, and 11a revealed promising PDE-5 inhibition having IC50 values = 25, 53, 22, and 42 nM, respectively in comparison with Sildenafil (IC50 = 16 nM). Additionally, these four most active compounds were safe to normal fibroblast cell line WI-38. Moreover, 4f, 4h, 4j, 10d, and 11d had almost the same anti-proliferative effect against the aortic cell line as Sildenafil. Furthermore, molecular docking illustrated that the binding of the target compounds with the key amino acids in the binding site of PDE-5 (PDB 2H42) was like to that of the cocrystallized ligand Sildenafil. Additionally, molecular dynamics simulation for the most active compound 4h revealed high stability of the 4h -PDE5 complex explaining its promising activity as a PDE-5 inhibitor. Therefore, the 2-phenyl-3,6-pyridazinedione scaffold can be considered an important core for designing more promising PDE-5 inhibitors.


Assuntos
Antineoplásicos , Inibidores da Fosfodiesterase 5 , Inibidores da Fosfodiesterase 5/farmacologia , Simulação de Acoplamento Molecular , Citrato de Sildenafila/farmacologia , Sítios de Ligação , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia
2.
J Enzyme Inhib Med Chem ; 38(1): 2166936, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36728746

RESUMO

Bis-thiazole derivatives were synthesised conforming to the Pim1 pharmacophore model following Hantzsch condensation. Pim1 has a major role in regulating the G1/S phase which upon inhibition the cell cycle stops at its early stages. Derivatives 3b and 8b showed the best Pim1 IC50 0.32 and 0.24 µM, respectively relative to staurosporine IC50 0.36 µM. Further confirmation of 3b and 8b Pim1 inhibition was implemented by hindering the T47D cell cycle at G0/G1 and S phases where 3b showed 66.5% cells accumulation at G0/G1 phase while 8b demonstrated 26.5% cells accumulation at the S phase compared to 53.9% and 14.9% of a control group for both phases, respectively. Additional in vivo cytotoxic evaluation of 3b and 8b revealed strong antitumor activity with up-regulation of caspase-3 and down-regulation of VEGF and TNF α immune expression with concomitant elevation of malondialdehyde levels in case of 8b.


Assuntos
Antineoplásicos , Tiazóis , Tiazóis/farmacologia , Antineoplásicos/farmacologia , Ciclo Celular , Estaurosporina/farmacologia , Regulação para Cima , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
3.
Diabetol Metab Syndr ; 14(1): 163, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316746

RESUMO

BACKGROUND: Diabetic hepatopathy is a serious complication of poorly controlled diabetes mellitus. An efficient antidiabetic drug which keeps normal liver tissues is not available. The renin-angiotensin system has been reported to be involved in both diabetic state and liver function. Aliskiren is a direct renin inhibitor and a recently antihypertensive drug with poly-pharmacological properties. The aim of the current study is to explore the possible hepatoprotective effects and mechanisms of action of aliskiren against streptozotocin (STZ) induced liver toxicity. METHODS: Mice were distributed to 3 groups; first: the normal control group, second: the diabetic control group, third: the diabetic group which received aliskiren (25 mg/kg; oral) for 4 weeks. At the end of the treatment period, plasma glucose, insulin, lipid profile, oxidative stress, and liver function tests were evaluated spectrophotometrically. ELISA technique was used to measure the expression levels of TNF-α and adiponectin. Furthermore, a Histopathological examination of liver samples was done. RESULTS: It was shown that aliskiren treatment ameliorated the STZ-induced oxidative stress and elevated inflammatory biomarkers, hypercholesterolemia, serum aminotransferases and alkaline phosphatase levels in diabetic mice. In addition, hepatocellular necrosis, and fibrosis were improved by aliskiren treatment. CONCLUSION: aliskiren protects against the liver damage caused by STZ-induced diabetes. This can be explained by its ability to block angiotensin-II, and its anti-diabetic, hypocholesterolemic, antioxidant and anti-inflammatory effects. Aliskiren could be a novel therapeutic strategy to prevent liver diseases associated with hypertension and diabetes mellitus.

4.
Food Funct ; 13(14): 7794-7812, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35766389

RESUMO

Age-related diseases, including dementia, are a major health concern affecting daily human life. Strawberry (Fragaria ananassa Duch.) is the most eaten fruit worldwide due to its exceptional aroma and flavor. However, it's rapid softening and decay limit its shelf-life. Freezing and boiling represent the well-known conservation methods to extend its shelf-life. Therefore, we aimed to discover the phytochemical content differences of fresh and processed strawberries associated with investigating and comparing their neuroprotective effects in a rat model of aging. Female Wistar rats were orally pretreated with fresh, boiled, and frozen F. ananassa methanolic extracts (250 mg kg-1) for 2 weeks, and then these extracts were concomitantly exposed to D-galactose [65 mg kg-1, subcutaneously (S/C)] and AlCl3 (200 mg kg-1, orally) for 6 weeks to develop aging-like symptoms. The results of UPLC/ESI-MS phytochemical profiling revealed 36 secondary metabolites, including phenolics, flavonoids, and their glycoside derivatives. Compared with boiled and frozen extracts, the fresh extract ameliorated the behavioral deficits including anxiety and cognitive dysfunction, upregulated brain HO-1 and Nrf2 levels, and markedly reduced caspase-3 and PPAR-γ levels. Moreover, LDH and miRNA-9, 124 and 132 protein expressions were reduced. The histological architecture of the brain hippocampus was restored and glial fibrillary acidic protein (GFAP) immunoexpression was downregulated. In conclusion, the fresh extract has neuroprotective activity that could have a promising role in ameliorating age-related neurodegeneration.


Assuntos
Fragaria , Envelhecimento , Cloreto de Alumínio , Animais , Feminino , Fragaria/química , Frutas/química , Galactose/efeitos adversos , Galactose/metabolismo , Humanos , Fenóis/análise , Compostos Fitoquímicos/análise , Extratos Vegetais/metabolismo , Ratos , Ratos Wistar
5.
Pharmaceutics ; 12(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365695

RESUMO

Drug absorption from the gastrointestinal tract (GIT) is one of the major problems affecting the bioavailability of orally absorbed drugs. This work aims to enhance Fexofenadine HCl oral bioavailability in vivo, the drug used for allergic rhinitis. In this study, novel spray-dried lactose-based enhanced in situ forming vesicles were prepared using different absorption enhancer by the slurry method. Full factorial design was used to obtain an optimized formulation, while central composite design was used to develop economic, environment-friendly analysis method of Fexofenadine HCl in plasma of rabbits. The optimized formulation containing Capryol 90 as absorption enhancer has a mean particle size 202.6 ± 3.9 nm and zeta potential -31.6 ± 0.9 mV. It achieved high entrapment efficiency of the drug 73.7 ± 1.7% and rapid Q3h release reaches 71.5 ± 2.7%. The design-optimized HPLC assay method in rabbit plasma could separate Fexofenadine HCl from endogenous plasma compounds in less than 3.7 min. The pharmacokinetic study and the pharmacological effect of the fexofenadine-loaded optimized formulation showed a significant increase in blood concentration and significantly higher activity against compound 48/80 induced systemic anaphylaxis-like reactions in mice. Therefore, enhanced in situ forming vesicles were effective nanocarriers for the entrapment and delivery of Fexofenadine HCl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...