Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 343: 140265, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758074

RESUMO

A new class of environmental pollutants that have become a significant concern for the entire world's population over the last few decades are pharmaceutical contaminants due to the potential risks they pose to the environment and human health. An investigation on the photocatalytic degradation of four different model pharmaceutical contaminants: Tetracycline (TCT), Sulfamethoxazole (SMX), Chloroquine (CLQ), and Diclofenac (DCF) has been carried out using ZnO nanoparticles as the photocatalyst, and sunlight as the source of energy in a batch photocatalytic reactor. This process resulted in the degradation of about 51% for TCT, 65% for SMX, 61% for CLQ, and 55% for DCF within 30 min of solar irradiation. Complete degradation and COD reduction were achieved after a prolonged irradiation. The slow decay is attributed to the evolution of the intermediate compounds, which were identified using the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) method. The possible intermediates formed were identified for each molecule (i.e., TCT having 6 products, SMX, having 4 products, DCF having 8 products and CLQ having 8 products), and the mechanism for each pollutant is proposed. The effect on distinct operational parameters, like catalyst loading, and pH, environmentally relevant parameters such as ionic effect, and multiple contaminants system were investigated. It was found that the anions such as Cl-, SO42-, CO32-, HCO3-, NO3-, F-, Br-, and I-both individually as well as in combination had no effect on the degradation except for SMX. For multiple component systems, when two pollutants are mixed, each pollutant affects the degradation of the other and in the case of CLQ/TCT system, CLQ inhibits the degradation of TCT drastically. The study demonstrates that ZnO is an effective and convenient option for photocatalytic decontamination of water sources contaminated with a variety of pharmaceutical contaminants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Óxido de Zinco , Humanos , Luz Solar , Óxido de Zinco/química , Água , Descontaminação , Diclofenaco/química , Sulfametoxazol , Poluentes Ambientais/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
2.
Water Air Soil Pollut ; 234(3): 146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844634

RESUMO

Photo-driven advanced oxidation process (AOP) with pharmaceutical wastewater has been poorly investigated so far. This paper presents the results of an experimental investigation on the photocatalytic degradation of emerging pharmaceutical contaminant chloroquine (CLQ) in water using zinc oxide (ZnO) nanoparticles as the catalyst and solar light (SL) as the source of energy. The catalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDAX), and transmission electron microscopy (TEM). The effect of various operating parameters such as catalyst loading, the concentration of target substrate, pH, and the effect of oxidants and anions (salts) on the efficiency of degradation was tested. The degradation follows pseudo-first-order kinetics. Surprisingly, contrary to the observation in most photocatalytic studies, the degradation is more efficient under solar radiation, with 77% under solar (SL) irradiation and 65% under UV light in 60 min. The degradation leads to slow and complete COD removal through several intermediates identified by the liquid chromatography-mass spectrometry (LC-MS) technique. The results suggest the possibility of using inexpensive natural, non-renewable solar energy for the purification of CLQ-contaminated water, thereby enabling the reuse of scarce water resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...