Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 10(59): 6349-6361, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31695843

RESUMO

Epithelial cells of prostate express significant level of ACE and, as a result, seminal fluid has 50-fold more ACE than plasma. The substitution of highly specialized prostate epithelial cells by tumor cells results in dramatic decrease in ACE production in prostate tissues. We performed detailed characterization of ACE status in prostate tissues from patients with benign prostate hyperplasia (BPH) and prostate cancer (PC) using new approach- ACE phenotyping, that includes evaluation of: 1) ACE activity with two substrates (HHL and ZPHL); 2) the ratio of the rates of their hydrolysis (ZPHL/HHL ratio); 3) the ratio of immunoreactive ACE protein to ACE activity; 4) the pattern of mAbs binding to different epitopes on ACE - ACE conformational fingerprint - to reveal conformational changes in prostate ACE due to prostate pathology. ACE activity dramatically decreased and the ratio of immunoreactive ACE protein to ACE activity increased in PC tissues. The catalytic parameter, ZPHL/HHL ratio, increased in prostate tissues from all patients with PC, but was did not change for most |BPH patients. Nevertheless, prostate tissues of several patients diagnosed with BPH based on histology, also demonstrated decreased ACE activity and increased immunoreactive ACE protein/ACE activity and ZPHL/HHL ratios, that could be considered as more early indicators of prostate cancer development than routine histology. Thus, ACE phenotyping of prostate biopsies has a potential to be an effective approach for early diagnostics of prostate cancer or at least for differential diagnostics of BPH and PC.

2.
Mol Genet Metab ; 123(4): 501-510, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29478818

RESUMO

BACKGROUND: Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. METHODS: ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. RESULTS: We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. CONCLUSIONS: The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease.


Assuntos
Células Dendríticas/enzimologia , Doença de Gaucher/enzimologia , Doença de Gaucher/patologia , Granuloma/enzimologia , Macrófagos/enzimologia , Peptidil Dipeptidase A/metabolismo , Células Cultivadas , Humanos , Fígado/enzimologia , Fenótipo , Baço/enzimologia
3.
Gene ; 505(1): 128-36, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609064

RESUMO

SVA elements represent the youngest family of hominid non-LTR retrotransposons. Recently, a human-specific subfamily (termed SVA(F1), CpG-SVA, or MAST2-SVA) was discovered representing fusion of the CpG island-containing exon 1 of the MAST2 gene and a 5'-truncated SVA. SVA(F1) includes at least 84 members, which suggests exceptionally high retrotransposition level. We investigated if the acquirement of the MAST2 CpG-island might play a role in the success of the SVA(F1) subfamily. We observed that in 16 samples representing seven human tissues, MAST2 was cotranscribed with the members of the SVA(F1) subfamily, but not with other retrotransposons. We found that the methylation status of the MAST2-derived sequences of SVA(F1) elements reversely correlates with the transcriptional activity of MAST2. The MAST2 sequence at the 5' end of SVA(F1) acts as a positive transcriptional regulator in human germ cells. Finally, in various testicular tissue samples we uncovered a transcriptional correlation of MAST2 with the human L1, Alu and SVA retrotransposons.


Assuntos
Ilhas de CpG/fisiologia , Éxons/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Elementos Reguladores de Transcrição/fisiologia , Retroelementos/fisiologia , Transcrição Gênica/fisiologia , Células Germinativas/metabolismo , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...