Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(1): 378-386, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34985900

RESUMO

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.

3.
J Chem Phys ; 154(18): 184202, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241007

RESUMO

Experimental demonstrations of polarization-selection two-dimensional Vibrational-Electronic (2D VE) and 2D Electronic-Vibrational (2D EV) spectroscopies aim to map the magnitudes and spatial orientations of coupled electronic and vibrational coordinates in complex systems. The realization of that goal depends on our ability to connect spectroscopic observables with molecular structural parameters. In this paper, we use a model Hamiltonian consisting of two anharmonically coupled vibrational modes in electronic ground and excited states with linear and bilinear vibronic coupling terms to simulate polarization-selective 2D EV and 2D VE spectra. We discuss the relationships between the linear vibronic coupling and two-dimensional Huang-Rhys parameters and between the bilinear vibronic coupling term and Duschinsky mixing. We develop a description of the vibronic transition dipoles and explore how the Hamiltonian parameters and non-Condon effects impact their amplitudes and orientations. Using simulated polarization-selective 2D EV and 2D VE spectra, we show how 2D peak positions, amplitudes, and anisotropy can be used to measure parameters of the vibronic Hamiltonian and non-Condon effects. This paper, along with the first in the series, provides the reader with a detailed description of reading, simulating, and analyzing multimode, polarization-selective 2D EV and 2D VE spectra with an emphasis on extracting vibronic coupling parameters from complex spectra.

4.
J Chem Phys ; 154(18): 184201, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241026

RESUMO

Two-dimensional Electronic-Vibrational (2D EV) spectroscopy and two-dimensional Vibrational-Electronic (2D VE) spectroscopy are among the newest additions to the coherent multidimensional spectroscopy toolbox, and they are directly sensitive to vibronic couplings. In this first of two papers, the complete orientational response functions are developed for a model system consisting of two coupled anharmonic oscillators and two electronic states in order to simulate polarization-selective 2D EV and 2D VE spectra with arbitrary combinations of linearly polarized electric fields. Here, we propose analytical methods to isolate desired signals within complicated spectra and to extract the relative orientation between vibrational and vibronic dipole moments of the model system using combinations of polarization-selective 2D EV and 2D VE spectral features. Time-dependent peak amplitudes of coherence peaks are also discussed as means for isolating desired signals within the time-domain. This paper serves as a field guide for using polarization-selective 2D EV and 2D VE spectroscopies to map coupled vibronic coordinates on the molecular frame.

5.
Nat Chem ; 13(4): 343-349, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589787

RESUMO

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120-200 cm-1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.

6.
Nat Commun ; 10(1): 5621, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819052

RESUMO

The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm-1 coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.

7.
J Phys Chem Lett ; 10(8): 1833-1839, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30925052

RESUMO

Developing interfacial probes of ligand-nanocluster interactions is crucial for understanding and tailoring the optoelectronic properties of these emerging nanomaterials. Using transient IR spectroscopy, we demonstrate that ligand vibrational modes of oleate-capped 1.3 nm InP nanoclusters report on the photogenerated exciton. The exciton induces an intensity change in the asymmetric carboxylate stretching mode by 57% while generating no appreciable shift in frequency. Thus, the observed difference signal is attributed to an exciton-induced change in the dipole magnitude of the asymmetric carboxylate stretching mode. Additionally, the transient IR data reveal that the infrared dipole change is dependent on the geometry of the ligand bound to the nanocluster. The experimental results are interpreted using TDDFT calculations, which identify how the spatial dependence of an exciton-induced electron density shift affects the vibrational motion of the carboxylate anchors. More broadly, this work demonstrates transient IR spectroscopy as a useful method for characterizing ligand-nanocluster coupling interactions.

8.
J Phys Chem Lett ; 9(21): 6289-6295, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339410

RESUMO

This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.

9.
J Chem Phys ; 147(9): 094202, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886647

RESUMO

Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.

10.
J Phys Chem A ; 121(15): 2863-2867, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28423899
11.
Opt Lett ; 41(12): 2895-8, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304316

RESUMO

The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles.

12.
J Mater Chem B ; 1(28): 3443-3450, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32260934

RESUMO

A simple enzyme-free spectrophotometric detection of hydrogen peroxide is demonstrated based on its colorimetric reaction with oxygen deficient cerium oxide nanoparticles (CNPs). This colorimetric sensitivity of CNPs towards H2O2 increases significantly with decreasing crystallite size due to an increase in the surface area as well as the concentration of Ce3+ on the surface. The origin of this colorimetric reaction was studied using DFT that suggests the adsorption of peroxide and oxygen molecules on ceria nanoparticles creates new states in the electronic structure leading to transitions absorbing in the visible region of the electromagnetic spectrum. For detection, a single layer of nanoparticles was immobilized on transparent microscopic glass slides using self-assembled monolayers (SAMs) of poly(4-vinylpyridine) (PVP). Cluster-free and uniform immobilization of nanoparticles was confirmed from atomic force microscopy (AFM) and helium ion microscopy (HIM). UV-Visible absorption measurements showed a concentration dependent increase in absorbance from immobilized CNPs that were exposed to increasing concentrations (10-400 µM) of hydrogen peroxide. The immobilized CNPs can be baked at 80 °C after initial use to regenerate the sensor for reuse. The development of a direct, reusable, enzyme-free and dye-free peroxide sensing technology is possible and can be immediately applied in various areas, including biomedicine and national security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...