Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581723

RESUMO

Dynamic modulation of endothelial cell-to-cell and cell-to-extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein-coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.


Assuntos
Permeabilidade Capilar/fisiologia , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Células COS , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Peixe-Zebra
2.
Cell Rep ; 18(4): 1033-1047, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122229

RESUMO

Vascular mural cells (vMCs) are essential components of the vertebrate vascular system, controlling blood vessel maturation and homeostasis. Discrete molecular mechanisms have been associated with vMC development and differentiation. The function of hemodynamic forces in controlling vMC recruitment is unclear. Using transgenic lines marking developing vMCs in zebrafish embryos, we find that vMCs are recruited by arterial-fated vessels and that the process is flow dependent. We take advantage of tissue-specific CRISPR gene targeting to demonstrate that hemodynamic-dependent Notch activation and the ensuing arterial genetic program is driven by endothelial primary cilia. We also identify zebrafish foxc1b as a cilia-dependent Notch-specific target that is required within endothelial cells to drive vMC recruitment. In summary, we have identified a hemodynamic-dependent mechanism in the developing vasculature that controls vMC recruitment.


Assuntos
Cílios/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Velocidade do Fluxo Sanguíneo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Células Endoteliais/citologia , Fatores de Transcrição Forkhead/genética , Hemodinâmica , Morfolinos/genética , Morfolinos/metabolismo , Quinazolinonas/farmacologia , Interferência de RNA , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Receptores Notch/metabolismo , Resistência ao Cisalhamento , Transdução de Sinais/efeitos dos fármacos , Troponina T/antagonistas & inibidores , Troponina T/genética , Troponina T/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
3.
Development ; 144(3): 464-478, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049660

RESUMO

Intestinal smooth muscle cells (iSMCs) are a crucial component of the adult gastrointestinal tract and support intestinal differentiation, peristalsis and epithelial homeostasis during development. Despite these crucial roles, the origin of iSMCs and the mechanisms responsible for their differentiation and function remain largely unknown in vertebrates. Here, we demonstrate that iSMCs arise from the lateral plate mesoderm (LPM) in a stepwise process. Combining pharmacological and genetic approaches, we show that TGFß/Alk5 signaling drives the LPM ventral migration and commitment to an iSMC fate. The Alk5-dependent induction of zeb1a and foxo1a is required for this morphogenetic process: zeb1a is responsible for driving LPM migration around the gut, whereas foxo1a regulates LPM predisposition to iSMC differentiation. We further show that TGFß, zeb1a and foxo1a are tightly linked together by miR-145 In iSMC-committed cells, TGFß induces the expression of miR-145, which in turn is able to downregulate zeb1a and foxo1a The absence of miR-145 results in only a slight reduction in the number of iSMCs, which still express mesenchymal genes but fail to contract. Together, our data uncover a cascade of molecular events that govern distinct morphogenetic steps during the emergence and differentiation of vertebrate iSMCs.


Assuntos
Intestinos/citologia , Miócitos de Músculo Liso/citologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Morfogênese , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
Methods Mol Biol ; 1464: 107-114, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27858360

RESUMO

The generation and use of transgenic animals carrying exogenous pieces of DNA stably integrated in their genome is a quite common practice in modern laboratories. Zebrafish have been increasingly used for transgenesis studies mainly due to easy egg accessibility and manipulation together with relatively short generation time. The zebrafish transgenic technology becomes very useful when coupled to continuous in vivo observation of the vertebrate embryonic vasculature. Here we describe the most common technique to generate zebrafish transgenic fish using the Tol2-based methodology and their applications to visualize vascular tissues or endothelial cells in vivo and for functional tumor angiogenesis studies.


Assuntos
Técnicas de Transferência de Genes , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Elementos de DNA Transponíveis , Mutagênese Insercional , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Peixe-Zebra/embriologia
5.
Mol Cell Neurosci ; 68: 103-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25937343

RESUMO

During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5(-/-) olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5-Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Fatores de Transcrição Forkhead/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Condutos Olfatórios/citologia , Gravidez , Peixe-Zebra
6.
Haematologica ; 100(6): 720-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795718

RESUMO

Feline leukemia virus subgroup C receptor 1 (Flvcr1) encodes two heme exporters: FLVCR1a, which localizes to the plasma membrane, and FLVCR1b, which localizes to mitochondria. Here, we investigated the role of the two Flvcr1 isoforms during erythropoiesis. We showed that, in mice and zebrafish, Flvcr1a is required for the expansion of committed erythroid progenitors but cannot drive their terminal differentiation, while Flvcr1b contributes to the expansion phase and is required for differentiation. FLVCR1a-down-regulated K562 cells have defective proliferation, enhanced differentiation, and heme loading in the cytosol, while FLVCR1a/1b-deficient K562 cells show impairment in both proliferation and differentiation, and accumulate heme in mitochondria. These data support a model in which the coordinated expression of Flvcr1a and Flvcr1b contributes to control the size of the cytosolic heme pool required to sustain metabolic activity during the expansion of erythroid progenitors and to allow hemoglobinization during their terminal maturation. Consistently, reduction or increase of the cytosolic heme rescued the erythroid defects in zebrafish deficient in Flvcr1a or Flvcr1b, respectively. Thus, heme export represents a tightly regulated process that controls erythropoiesis.


Assuntos
Diferenciação Celular/fisiologia , Eritropoese/fisiologia , Heme/metabolismo , Líquido Intracelular/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Receptores Virais/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Células K562 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Peixe-Zebra
7.
Cell Mol Life Sci ; 70(14): 2489-503, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23069988

RESUMO

MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.


Assuntos
Sistema Cardiovascular/metabolismo , MicroRNAs/metabolismo , Modelos Animais , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Sistema Cardiovascular/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...