Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35736697

RESUMO

DNA fingerprinting is a molecular technique applied to identify genetic differences between plant cultivars or lines and is used for genetic purity testing. The suitability of single nucleotide polymorphism (SNP) panels for the fingerprinting of tetraploid potato were investigated as a new high throughput, objective, and cost-effective method instead of simple sequence repeats (SSRs) and polyacrylamide gel electrophoresis (PAGE). One-hundred and ninety (190) potato cultivars, including various cultivars currently important in South Africa, were genotyped at 500 SNP positions utilising SeqSNP by LGC Biosearch Technologies. An optimal panel of 25 SNP markers was identified that could discriminate between South African potato cultivars on genetic allele dosage. The genotypes of these SNPs were validated on selected potato genotypes using KASP (Kompetitive Allele Specific PCR) SNP assays. A database of SNP genotype profiles was compiled for all the entries of the germplasm database. The panel of 21 successful SNPs accurately identified the unique potato cultivars in the database. The KASP SNP assays of the successful SNP panel are therefore available for potato DNA fingerprinting as new germplasm, or purity test requests are submitted to ARC-VIMP. This panel provides an objective method for assigning putative cultivar identity to unknown samples submitted for fingerprinting.

2.
Plant Methods ; 6: 10, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20359330

RESUMO

BACKGROUND: Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L.) Walp). We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. RESULTS: Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i) to normalize the data effectively using spike-in control spot normalization, and (ii) to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value < 0.05). Enrichment ratio 2 calculations showed that > 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped redundant clones together and illustrated that the SSHscreen plots are a useful tool for choosing anonymous clones for sequencing, since redundant clones cluster together on the enrichment ratio plots. CONCLUSIONS: We developed the SSHscreen-SSHdb software pipeline, which greatly facilitates gene discovery using suppression subtractive hybridization by improving the selection of clones for sequencing after screening the library on a small number of microarrays. Annotation of the sequence information and collaboration was further enhanced through a web-based SSHdb database, and we illustrated this through identification of drought responsive genes from cowpea, which can now be investigated in gene function studies. SSH is a popular and powerful gene discovery tool, and therefore this pipeline will have application for gene discovery in any biological system, particularly non-model organisms. SSHscreen 2.0.1 and a link to SSHdb are available from http://microarray.up.ac.za/SSHscreen.

3.
Phytochemistry ; 67(3): 255-63, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16364381

RESUMO

Extracts from apple fruit (cultivar "Granny Smith") inhibited the cell-wall degrading polygalacturonase (PG) activity of Colletotrichum lupini, the causal agent of anthracnose on lupins, as well as Aspergillus niger PG. Southern blot analysis indicated that this cultivar of apple has a small gene family of polygalacturonase inhibiting proteins (pgips), and therefore heterologous expression in transgenic tobacco was used to identify the specific gene product responsible for the inhibitory activity. A previously isolated pgip gene, termed Mdpgip1, was introduced into tobacco (Nicotiana tabacum) by Agrobacterium-mediated transformation. The mature MdPGIP1 protein was purified to apparent homogeneity from tobacco leaves by high salt extraction, clarification by DEAE-Sepharose and cation exchange HPLC. Purified MdPGIP1 inhibited PGs from C. lupini and PGs from two economically important pathogens of apple trees, Botryosphaeria obtusa and Diaporthe ambigua. It did not inhibit the A. niger PG, which was in contrast to the apple fruit extract used in this study. We conclude that there are at least two active PGIPs expressed in apple, which differ in their charge properties and ability to inhibit A. niger PG.


Assuntos
Inibidores Enzimáticos/metabolismo , Fungos/enzimologia , Malus/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/antagonistas & inibidores , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Aspergillus niger/enzimologia , Aspergillus niger/patogenicidade , Colletotrichum/enzimologia , Colletotrichum/patogenicidade , Inibidores Enzimáticos/isolamento & purificação , Malus/genética , Malus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Nicotiana/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...