Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Syst Evol ; 11: 51-61, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532936

RESUMO

This study investigated the incidence and diversity of Tolypocladium within trunks of south Florida slash pines (Pinus densa). Thirty-five isolates were recovered from trunk tissue including living phloem, cambium, and sapwood. Two novel species of Tolypocladium (T. subtropicale and T. trecense) are described here based on morphological and molecular analysis of concatenated LSU, ITS, tef-1, tub, and RPB1 sequences. Our findings expand our understanding of the distribution, diversity, and ecology of this genus and confirm that it is widely spread as an endophyte across ecosystems and hosts. Strains collected in this survey will be used in future bioassays to determine their potential ecological roles as mycoparasites or entomopathogens. Citation: Soares JM, Karlsen-Ayala E, Salvador-Montoya CA, Gazis R (2023). Two novel endophytic Tolypocladium species identified from native pines in south Florida. Fungal Systematics and Evolution 11: 51-61. doi: 10.3114/fuse.2023.11.04.

3.
Environ Entomol ; 51(2): 385-396, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935953

RESUMO

Most beetle-fungus symbioses do not represent a threat to agricultural and natural ecosystems; however, a few beetles are able to inoculate healthy hosts with disease-causing fungal symbionts. Here, we report the putative nutritional symbionts associated with five native species of ambrosia beetles colonizing commercial avocado trees in four locations in Michoacán. Knowing which beetles are present in the commercial orchards and the surrounding areas, as well as their fungal associates, is imperative for developing a realistic risk assessment and an effective monitoring system that allows for timely management actions. Phylogenetic analysis revealed five potentially new, previously undescribed species of Raffaelea, and three known species (R. arxi, R. brunnea, R. fusca). The genus Raffaelea was recovered from all the beetle species and across the different locations. Raffaelea lauricola (RL), which causes a deadly vascular fungal disease known as laurel wilt (LW) in Lauraceae species, including avocado, was not recovered. This study points to the imminent danger of native ambrosia beetles spreading RL if the pathogen is introduced to Mexico's avocado orchards or natural areas given that these beetles are associated with Raffaelea species and that lateral transfer of RL among ambrosia beetles in Florida suggests that the likelihood of this phenomenon increases when partners are phylogenetically close. Therefore, this study provides important information about the potential vectors of RL in Mexico and other avocado producing regions. Confirming beetle-fungal identities in these areas is especially important given the serious threat laurel wilt disease represents to the avocado industry in Mexico.


Assuntos
Besouros , Ophiostomatales , Persea , Gorgulhos , Ambrosia , Animais , Besouros/microbiologia , Ecossistema , México , Filogenia , Simbiose , Gorgulhos/microbiologia
4.
Fungal Syst Evol ; 8: 91-100, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005575

RESUMO

We describe a novel sequestrate genus and species, Asperosporus subterraneus gen. et sp. nov., found associated with nursery production of ferns in south Florida. This truffle species has a unique combination of morphological characters among described Agaricaceae in that it lacks a stipe or columella, has large, ornamented spores, the fresh sporocarps rapidly stain pink-red when cut or bruised, and they have a rancid smell. Although this fungus does not appear to be a direct plant pathogen, the hyphae of A. subterraneus produce a thick hydrophobic mycelial mat that binds the organic matter and therefore prevents water and fertilizer from being absorbed by plants, consequently causing wilting and chlorosis. Using morphological characteristics and phylogenetic reconstruction based on the internal transcribed spacer (ITS), partial large subunit nuclear ribosomal DNA (LSU), second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-alpha (tef1) regions, we describe this taxon as a new genus and species in Agaricaceae.

5.
Microb Ecol ; 76(4): 925-940, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29675704

RESUMO

Nutritional mutualisms that ambrosia beetles have with fungi are poorly understood. Although these interactions were initially thought to be specific associations with a primary symbiont, there is increasing evidence that some of these fungi are associated with, and move among, multiple beetle partners. We examined culturable fungi recovered from mycangia of ambrosia beetles associated with trees of Persea humilis (silk bay, one site) and P. americana (avocado, six commercial orchards) that were affected by laurel wilt, an invasive disease caused by a symbiont, Raffaelea lauricola, of an Asian ambrosia beetle, Xyleborus glabratus. Fungi were isolated from 20 adult females of X. glabratus from silk bay and 70 each of Xyleborus affinis, Xyleborus bispinatus, Xyleborus volvulus, Xyleborinus saxesenii, and Xylosandrus crassiusculus from avocado. With partial sequences of ribosomal (LSU and SSU) and nuclear (ß-tubulin) genes, one to several operational taxonomic units (OTUs) of fungi were identified in assayed individuals. Distinct populations of fungi were recovered from each of the examined beetle species. Raffaelea lauricola was present in all beetles except X. saxesenii and X. crassiusculus, and Raffaelea spp. predominated in Xyleborus spp. Raffaelea arxii, R. subalba, and R. subfusca were present in more than a single species of Xyleborus, and R. arxii was the most abundant symbiont in both X. affinis and X. volvulus. Raffaelea aguacate was detected for the first time in an ambrosia beetle (X. bispinatus). Yeasts (Ascomycota, Saccharomycotina) were found consistently in the mycangia of the examined beetles, and distinct, putatively co-adapted populations of these fungi were associated with each beetle species. Greater understandings are needed for how mycangia in ambrosia beetles interact with fungi, including yeasts which play currently underresearched roles in these insects.


Assuntos
Ophiostomatales/fisiologia , Persea/microbiologia , Doenças das Plantas/microbiologia , Simbiose , Gorgulhos/microbiologia , Animais , Feminino , Florida , Gorgulhos/classificação
6.
Mol Phylogenet Evol ; 65(1): 294-304, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22772026

RESUMO

Through a culture-based survey of living sapwood and leaves of rubber trees (Hevea spp.) in remote forests of Peru, we discovered a new major lineage of Ascomycota, equivalent to a class rank. Multilocus phylogenetic analyses reveal that this new lineage originated during the radiation of the 'Leotiomyceta', which resulted not only in the evolution of the Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Geoglossomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes, and Sordariomycetes, but also of the majority of hyperdiverse foliar endophytes. Because its origin is nested within this major burst of fungal diversification, we could not recover strong support for its phylogenetic relationship within the 'Leotiomyceta'. Congruent with their long phylogenetic history and distinctive preference for growing in sapwood, this new lineage displays unique morphological, physiological, and ecological traits relative to known endophytes and currently described members of the 'Leotiomyceta'. In marked contrast to many foliar endophytes, the strains we isolated fail to degrade cellulose and lignin in vitro. Discovery of the new class, herein named Xylonomycetes and originally mis-identified by ITSrDNA sequencing alone, highlights the importance of inventorying tropical endophytes from unexplored regions, using multilocus data sets to infer the phylogenetic placement of unknown strains, and the need to sample diverse plant tissues using traditional methods to enhance efforts to discover the evolutionary, taxonomic, and functional diversity of symbiotrophic fungi.


Assuntos
Ascomicetos/classificação , Endófitos/classificação , Hevea/microbiologia , Filogenia , Ascomicetos/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico , Endófitos/genética , Modelos Genéticos , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , Peru , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...