Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958379

RESUMO

Deep learning applications are emerging as promising new tools that can support the diagnosis and classification of different cancer types. While such solutions hold great potential for hematological malignancies, there have been limited studies describing the use of such applications in this field. The rapid diagnosis of double/triple-hit lymphomas (DHLs/THLs) involving MYC, BCL2 and/or BCL6 rearrangements is obligatory for optimal patient care. Here, we present a novel deep learning tool for diagnosing DHLs/THLs directly from scanned images of biopsy slides. A total of 57 biopsies, including 32 in a training set (including five DH lymphoma cases) and 25 in a validation set (including 10 DH/TH cases), were included. The DHL-classifier demonstrated a sensitivity of 100%, a specificity of 87% and an AUC of 0.95, with only two false positive cases, compared to FISH. The DHL-classifier showed a 92% predictive value as a screening tool for performing conventional FISH analysis, over-performing currently used criteria. The work presented here provides the proof of concept for the potential use of an AI tool for the identification of DH/TH events. However, more extensive follow-up studies are required to assess the robustness of this tool and achieve high performances in a diverse population.

2.
Elife ; 122023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530521

RESUMO

Telomeres cap and protect the linear eukaryotic chromosomes. Telomere length is determined by an equilibrium between positive and negative regulators of telomerase activity. A systematic screen for yeast mutants that affect telomere length maintenance in the yeast Saccharomyces cerevisiae revealed that mutations in any of ~500 genes affects telomere length. One of the genes that, when mutated, causes telomere elongation is ELG1, which encodes an unloader of PCNA, the processivity factor for replicative DNA polymerases. PCNA can undergo SUMOylation on two conserved residues, K164 and K127, or ubiquitination at lysine 164. These modifications have already been implicated in genome stability processes. We report that SUMOylated PCNA acts as a signal that positively regulates telomerase activity. We also uncovered physical interactions between Elg1 and the CST (Cdc13-Stn1-Ten) complex and addressed the mechanism by which Elg1 and Stn1 negatively regulates telomere elongation, coordinated by SUMO. We discuss these results with respect to how chromosomal replication and telomere elongation are coordinated.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Ligação Proteica , Telômero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo
3.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300787

RESUMO

Background: HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods: We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing, and regulatory features. Results: This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal centre (GC) activity, homing capacity, and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2-specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions: Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. Funding: This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative [grant number 64809]), and the Victor Daitz Foundation.


Assuntos
COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , África do Sul , Anticorpos Antivirais
4.
Mod Pathol ; 35(12): 1882-1887, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057739

RESUMO

Anaplastic lymphoma kinase (ALK) and ROS oncogene 1 (ROS1) gene fusions are well-established key players in non-small cell lung cancer (NSCLC). Although their frequency is relatively low, their detection is important for patient care and guides therapeutic decisions. The accepted methods used for their detection are immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assay, as well as DNA and RNA-based sequencing methodologies. These assays are expensive, time-consuming, and require technical expertise and specialized equipment as well as biological specimens that are not always available. Here we present an alternative detection method using a computer vision deep learning approach. An advanced convolutional neural network (CNN) was used to generate classifier models to detect ALK and ROS1-fusions directly from scanned hematoxylin and eosin (H&E) whole slide images prepared from NSCLC tumors of patients. A two-step training approach was applied, with an initial unsupervised training step performed on a pan-cancer sample cohort followed by a semi-supervised fine-tuning step, which supported the development of a classifier with performances equal to those accepted for diagnostic tests. Validation of the ALK/ROS1 classifier on a cohort of 72 lung cancer cases who underwent ALK and ROS1-fusion testing at the pathology department at Sheba Medical Center displayed sensitivities of 100% for both genes (six ALK-positive and two ROS1-positive cases) and specificities of 100% and 98.6% respectively for ALK and ROS1, with only one false-positive result for ROS1-alteration. These results demonstrate the potential advantages that machine learning solutions may have in the molecular pathology domain, by allowing fast, standardized, accurate, and robust biomarker detection overcoming many limitations encountered when using current techniques. The integration of such novel solutions into the routine pathology workflow can support and improve the current clinical pipeline.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Amarelo de Eosina-(YS) , Rearranjo Gênico , Hematoxilina , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Fusão Oncogênica
5.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880744

RESUMO

In some instances, unsuppressed HIV has been associated with severe COVID-19 disease, but the mechanisms underpinning this susceptibility are still unclear. Here, we assessed the impact of HIV infection on the quality and epitope specificity of SARS-CoV-2 T cell responses in the first wave and second wave of the COVID-19 epidemic in South Africa. Flow cytometry was used to measure T cell responses following peripheral blood mononuclear cell stimulation with SARS-CoV-2 peptide pools. Culture expansion was used to determine T cell immunodominance hierarchies and to assess potential SARS-CoV-2 escape from T cell recognition. HIV-seronegative individuals had significantly greater CD4+ T cell responses against the Spike protein compared to the viremic people living with HIV (PLWH). Absolute CD4 count correlated positively with SARS-CoV-2-specific CD4+ and CD8+ T cell responses (CD4 r=0.5, p=0.03; CD8 r=0.5, p=0.001), whereas T cell activation was negatively correlated with CD4+ T cell responses (CD4 r=-0.7, p=0.04). There was diminished T cell cross-recognition between the two waves, which was more pronounced in individuals with unsuppressed HIV infection. Importantly, we identify four mutations in the Beta variant that resulted in abrogation of T cell recognition. Taken together, we show that unsuppressed HIV infection markedly impairs T cell responses to SARS-Cov-2 infection and diminishes T cell cross-recognition. These findings may partly explain the increased susceptibility of PLWH to severe COVID-19 and also highlights their vulnerability to emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Infecções por HIV , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV/complicações , Humanos , Leucócitos Mononucleares , SARS-CoV-2
6.
Elife ; 102021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608862

RESUMO

There are conflicting reports on the effects of HIV on COVID-19. Here, we analyzed disease severity and immune cell changes during and after SARS-CoV-2 infection in 236 participants from South Africa, of which 39% were people living with HIV (PLWH), during the first and second (Beta dominated) infection waves. The second wave had more PLWH requiring supplemental oxygen relative to HIV-negative participants. Higher disease severity was associated with low CD4 T cell counts and higher neutrophil to lymphocyte ratios (NLR). Yet, CD4 counts recovered and NLR stabilized after SARS-CoV-2 clearance in wave 2 infected PLWH, arguing for an interaction between SARS-CoV-2 and HIV infection leading to low CD4 and high NLR. The first infection wave, where severity in HIV negative and PLWH was similar, still showed some HIV modulation of SARS-CoV-2 immune responses. Therefore, HIV infection can synergize with the SARS-CoV-2 variant to change COVID-19 outcomes.


Assuntos
COVID-19/complicações , COVID-19/imunologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Imunidade Celular , Índice de Gravidade de Doença , Adulto , Idoso , Contagem de Linfócito CD4 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , África do Sul
7.
Virus Evol ; 7(1): veab041, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34035952

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in humans and a wide range of animal species. Its rapid global spread has resulted in a major public health emergency, necessitating commensurately rapid research to improve control strategies. In particular, the ability to effectively retrace transmission chains in outbreaks remains a major challenge, partly due to our limited understanding of the virus' underlying evolutionary dynamics within and between hosts. We used high-throughput sequencing whole-genome data coupled with bottleneck analysis to retrace the pathways of viral transmission in two nosocomial outbreaks that were previously characterised by epidemiological and phylogenetic methods. Additionally, we assessed the mutational landscape, selection pressures, and diversity at the within-host level for both outbreaks. Our findings show evidence of within-host selection and transmission of variants between samples. Both bottleneck and diversity analyses highlight within-host and consensus-level variants shared by putative source-recipient pairs in both outbreaks, suggesting that certain within-host variants in these outbreaks may have been transmitted upon infection rather than arising de novo independently within multiple hosts. Overall, our findings demonstrate the utility of combining within-host diversity and bottleneck estimations for elucidating transmission events in SARS-CoV-2 outbreaks, provide insight into the maintenance of viral genetic diversity, provide a list of candidate targets of positive selection for further investigation, and demonstrate that within-host variants can be transferred between patients. Together these results will help in developing strategies to understand the nature of transmission events and curtail the spread of SARS-CoV-2.

8.
Nature ; 593(7857): 142-146, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780970

RESUMO

SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations1,2 and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-23. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Evasão da Resposta Imune/imunologia , Mutação , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , COVID-19/epidemiologia , Linhagem Celular , Chlorocebus aethiops , Humanos , Evasão da Resposta Imune/genética , Imunização Passiva , Testes de Neutralização , SARS-CoV-2/genética , África do Sul/epidemiologia , Fatores de Tempo , Células Vero , Soroterapia para COVID-19
9.
Nat Med ; 27(3): 440-446, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33531709

RESUMO

The first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in South Africa was identified on 5 March 2020, and by 26 March the country was in full lockdown (Oxford stringency index of 90)1. Despite the early response, by November 2020, over 785,000 people in South Africa were infected, which accounted for approximately 50% of all known African infections2. In this study, we analyzed 1,365 near whole genomes and report the identification of 16 new lineages of SARS-CoV-2 isolated between 6 March and 26 August 2020. Most of these lineages have unique mutations that have not been identified elsewhere. We also show that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the first wave, comprising ~42% of all infections in the country at the time. The newly identified C lineage of SARS-CoV-2, C.1, which has 16 nucleotide mutations as compared with the original Wuhan sequence, including one amino acid change on the spike protein, D614G (ref. 3), was the most geographically widespread lineage in South Africa by the end of August 2020. An early South African-specific lineage, B.1.106, which was identified in April 2020 (ref. 4), became extinct after nosocomial outbreaks were controlled in KwaZulu-Natal Province. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify new lineages and inform measures to control the spread of SARS-CoV-2. Such genomic surveillance presented in this study has been shown to be crucial in the identification of the 501Y.V2 variant in South Africa in December 2020 (ref. 5).


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Conjuntos de Dados como Assunto , Genoma Viral , Humanos , Tipagem Molecular , Mutação , Pandemias , Filogenia , Filogeografia , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA , África do Sul/epidemiologia , Sequenciamento Completo do Genoma
10.
Int J Infect Dis ; 103: 234-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33189939

RESUMO

OBJECTIVES: The Network for Genomic Surveillance in South Africa (NGS-SA) was formed to investigate the introduction and understand the early transmission dynamics of the SARS-CoV-2 epidemic in South-Africa. DESIGN: This paper presents the first results from this group, which is a molecular epidemiological study of the first 21 SARS-CoV-2 whole genomes sampled in the first port of entry - KwaZulu-Natal (KZN) - during the first month of the epidemic. By combining this with calculations of the effective reproduction number (R), it aimed to shed light on the patterns of infections in South Africa. RESULTS: Two of the largest provinces - Gauteng and KZN - had a slow growth rate for the number of detected cases, while the epidemic spread faster in the Western Cape and Eastern Cape. The estimates of transmission potential suggested a decrease towards R = 1 since the first cases and deaths, but a subsequent estimated R average of 1.39 between 6-18 May 2020. It was also demonstrated that early transmission in KZN was associated with multiple international introductions and dominated by lineages B1 and B. Evidence for locally acquired infections in a hospital in Durban within the first month of the epidemic was also provided. CONCLUSION: The COVID-19 pandemic in South Africa was very heterogeneous in its spatial dimension, with many distinct introductions of SARS-CoV2 in KZN and evidence of nosocomial transmission, which inflated early mortality in KZN. The epidemic at the local level was still developing and NGS-SA aimed to clarify the dynamics in South Africa and devise the most effective measures as the outbreak evolved.


Assuntos
COVID-19/transmissão , Filogenia , SARS-CoV-2/genética , Humanos , África do Sul/epidemiologia
11.
medRxiv ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33236025

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in both humans and wide range of animal species. Its rapid spread globally and devasting effects have resulted into a major public health emergency prompting the need for methodological interventions to understand and control its spread. In particular, The ability to effectively retrace its transmission pathways in outbreaks remains a major challenge. This is further exacerbated by our limited understanding of its underlying evolutionary mechanism. Using NGS whole-genome data, we determined whether inter- and intra-host diversity coupled with bottleneck analysis can retrace the pathway of viral transmission in two epidemiologically well characterised nosocomial outbreaks in healthcare settings supported by phylogenetic analysis. Additionally, we assessed the mutational landscape, selection pressure and diversity of the identified variants. Our findings showed evidence of intrahost variant transmission and evolution of SARS-CoV-2 after infection These observations were consistent with the results from the bottleneck analysis suggesting that certain intrahost variants in this study could have been transmitted to recipients. In both outbreaks, we observed iSNVs and SNVs shared by putative source-recipients pairs. Majority of the observed iSNVs were positioned in the S and ORF1ab region. AG, CT and TC nucleotide changes were enriched across SARS-COV-2 genome. Moreover, SARS-COV-2 genome had limited diversity in some loci while being highly conserved in others. Overall, Our findings show that the synergistic effect of combining withinhost diversity and bottleneck estimations greatly enhances resolution of transmission events in Sars-Cov-2 outbreaks. They also provide insight into the genome diversity suggesting purifying selection may be involved in the transmission. Together these results will help in developing strategies to elucidate transmission events and curtail the spread of Sars-Cov-2.

12.
Genes (Basel) ; 11(8)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824573

RESUMO

The COVID-19 pandemic has spread very fast around the world. A few days after the first detected case in South Africa, an infection started in a large hospital outbreak in Durban, KwaZulu-Natal (KZN). Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes can be used to trace the path of transmission within a hospital. It can also identify the source of the outbreak and provide lessons to improve infection prevention and control strategies. This manuscript outlines the obstacles encountered in order to genotype SARS-CoV-2 in near-real time during an urgent outbreak investigation. This included problems with the length of the original genotyping protocol, unavailability of reagents, and sample degradation and storage. Despite this, three different library preparation methods for Illumina sequencing were set up, and the hands-on library preparation time was decreased from twelve to three hours, which enabled the outbreak investigation to be completed in just a few weeks. Furthermore, the new protocols increased the success rate of sequencing whole viral genomes. A simple bioinformatics workflow for the assembly of high-quality genomes in near-real time was also fine-tuned. In order to allow other laboratories to learn from our experience, all of the library preparation and bioinformatics protocols are publicly available at protocols.io and distributed to other laboratories of the Network for Genomics Surveillance in South Africa (NGS-SA) consortium.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Diagnóstico Molecular/métodos , Pneumonia Viral/diagnóstico , Sequenciamento Completo do Genoma/métodos , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/virologia , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Técnicas de Diagnóstico Molecular/normas , Pandemias , Pneumonia Viral/virologia , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade , Sequenciamento Completo do Genoma/normas
13.
Front Cell Dev Biol ; 8: 482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695777

RESUMO

The Fragile-X related disorders (FXDs) are Repeat Expansion Diseases (REDs) that result from expansion of a CGG-repeat tract located at the 5' end of the FMR1 gene. While expansion affects transmission risk and can also affect disease risk and severity, the underlying molecular mechanism responsible is unknown. Despite the fact that expanded alleles can be seen both in humans and mouse models in vivo, existing patient-derived cells do not show significant repeat expansions even after extended periods in culture. In order to develop a good tissue culture model for studying expansions we tested whether mouse embryonic stem cells (mESCs) carrying an expanded CGG repeat tract in the endogenous Fmr1 gene are permissive for expansion. We show here that these mESCs have a very high frequency of expansion that allows changes in the repeat number to be seen within a matter of days. CRISPR-Cas9 gene editing of these cells suggests that this may be due in part to the fact that non-homologous end-joining (NHEJ), which is able to protect against expansions in some cell types, is not effective in mESCs. CRISPR-Cas9 gene editing also shows that these expansions are MSH2-dependent, consistent with those seen in vivo. While comparable human Genome Wide Association (GWA) studies are not available for the FXDs, such studies have implicated MSH2 in expansion in other REDs. The shared unusual requirement for MSH2 for this type of microsatellite instability suggests that this new cell-based system is relevant for understanding the mechanism responsible for this peculiar type of mutation in humans. The high frequency of expansions and the ease of gene editing these cells should expedite the identification of factors that affect expansion risk. Additionally, we found that, as with cells from human premutation (PM) carriers, these cell lines have elevated mitochondrial copy numbers and Fmr1 hyperexpression, that we show here is O2-sensitive. Thus, this new stem cell model should facilitate studies of both repeat expansion and the consequences of expansion during early embryonic development.

14.
medRxiv ; 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32511505

RESUMO

Background: The emergence of a novel coronavirus, SARS-CoV-2, in December 2019, progressed to become a world pandemic in a few months and reached South Africa at the beginning of March. To investigate introduction and understand the early transmission dynamics of the virus, we formed the South African Network for Genomics Surveillance of COVID (SANGS_COVID), a network of ten government and university laboratories. Here, we present the first results of this effort, which is a molecular epidemiological study of the first twenty-one SARS-CoV-2 whole genomes sampled in the first port of entry, KwaZulu-Natal (KZN), during the first month of the epidemic. By combining this with calculations of the effective reproduction number (R), we aim to shed light on the patterns of infections that define the epidemic in South Africa. Methods: R was calculated using positive cases and deaths from reports provided by the four major provinces. Molecular epidemiology investigation involved sequencing viral genomes from patients in KZN using ARCTIC protocols and assembling whole genomes using meticulous alignment methods. Phylogenetic analysis was performed using maximum likelihood (ML) and Bayesian trees, lineage classification and molecular clock calculations. Findings: The epidemic in South Africa has been very heterogeneous. Two of the largest provinces, Gauteng, home of the two large metropolis Johannesburg and Pretoria, and KwaZulu-Natal, home of the third largest city in the country Durban, had a slow growth rate on the number of detected cases. Whereas, Western Cape, home of Cape Town, and the Eastern Cape provinces the epidemic is spreading fast. Our estimates of transmission potential for South Africa suggest a decreasing transmission potential towards R=1 since the first cases and deaths have been reported. However, between 06 May and 18 May 2020, we estimate that R was on average 1.39 (1.04 - 2.15, 95% CI). We also demonstrate that early transmission in KZN, and most probably in all main regions of SA, was associated with multiple international introductions and dominated by lineages B1 and B. The study also provides evidence for locally acquired infections in a hospital in Durban within the first month of the epidemic, which inflated early mortality in KZN. Interpretation: This first report of SANGS_COVID consortium focuses on understanding the epidemic heterogeneity and introduction of SARS-CoV-2 strains in the first month of the epidemic in South Africa. The early introduction of SARS-CoV-2 in KZN included caused a localized outbreak in a hospital, provides potential explanations for the initially high death rates in the province. The current high rate of transmission of COVID-19 in the Western Cape and Eastern Cape highlights the crucial need to strength local genomic surveillance in South Africa. Funding: UKZN Flagship Program entitled: Afrocentric Precision Approach to Control Health Epidemic, by a research Flagship grant from the South African Medical Research Council (MRC-RFA-UFSP-01-2013/UKZN HIVEPI, by the the Technology Innovation Agency and the the Department of Science and Innovation and by National Human Genome Re- search Institute of the National Institutes of Health under Award Number U24HG006941. H3ABioNet is an initiative of the Human Health and Heredity in Africa Consortium (H3Africa).

16.
Brain Sci ; 9(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426300

RESUMO

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability, as well as the most common known monogenic cause of autism spectrum disorder (ASD), affecting 1 in 4000-8000 people worldwide [...].

17.
Brain Sci ; 9(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832215

RESUMO

The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.

18.
Brain Sci ; 9(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759772

RESUMO

More than ~200 CGG repeats in the 5' untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.

19.
DNA Repair (Amst) ; 74: 63-69, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30606610

RESUMO

Expansion of a CGG-repeat tract in the 5' UTR of FMR1 is responsible for the Fragile X-related disorders (FXDs), FXTAS, FXPOI and FXS. Previous work in a mouse model of these disorders has implicated proteins in the base excision and the mismatch repair (MMR) pathways in the expansion mechanism. However, the precise role of these factors in this process is not well understood. The essential role of MutLγ, a complex that plays a minor role in MMR but that is essential for resolving Holliday junctions during meiosis, raises the possibility that expansions proceed via a Holliday junction-like intermediate that is processed to generate a double-strand break (DSB). We show here in an FXD mouse model that LIG4, a ligase essential for non-homologous end-joining (NHEJ), a form of DSB repair (DSBR), protects against expansions. However, a mutation in MRE11, a nuclease that is important for several other DSBR pathways including homologous recombination (HR), has no effect on the extent of expansion. Our results suggest that the expansion pathway competes with NHEJ for the processing of a DSB intermediate. Thus, expansion likely proceeds via an NHEJ-independent DSBR pathway that may also be HR-independent.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Síndrome do Cromossomo X Frágil/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Recombinação Homóloga , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
PLoS Genet ; 13(10): e1007082, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29069086

RESUMO

Ribonucleotide reductase (RNR) provides the precursors for the generation of dNTPs, which are required for DNA synthesis and repair. Here, we investigated the function of the major RNR subunits Rnr1 and Rnr3 in telomere elongation in budding yeast. We show that Rnr1 is essential for the sustained elongation of short telomeres by telomerase. In the absence of Rnr1, cells harbor very short, but functional, telomeres, which cannot become elongated by increased telomerase activity or by tethering of telomerase to telomeres. Furthermore, we demonstrate that Rnr1 function is critical to prevent an early onset of replicative senescence and premature survivor formation in telomerase-negative cells but dispensable for telomere elongation by Homology-Directed-Repair. Our results suggest that telomerase has a "basal activity" mode that is sufficient to compensate for the "end-replication-problem" and does not require the presence of Rnr1 and a different "sustained activity" mode necessary for the elongation of short telomeres, which requires an upregulation of dNTP levels and dGTP ratios specifically through Rnr1 function. By analyzing telomere length and dNTP levels in different mutants showing changes in RNR complex composition and activity we provide evidence that the Mec1ATR checkpoint protein promotes telomere elongation by increasing both dNTP levels and dGTP ratios through Rnr1 upregulation in a mechanism that cannot be replaced by its homolog Rnr3.


Assuntos
Ribonucleotídeo Redutases/genética , Saccharomycetales/genética , Telomerase/metabolismo , Homeostase do Telômero , Telômero , Senescência Celular , Replicação do DNA , Saccharomycetales/citologia , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...