Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11936, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488132

RESUMO

In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhancing oil recovery by reducing interfacial tension and/or modifying wettability. However, the effectiveness and economic feasibility of the cEOR process are compromised due to the adsorption of surfactants on rock surfaces. Therefore, surfactant adsorption must be reduced to make the cEOR process efficient and economical. Herein, the synergic application of low salinity water and a cationic gemini surfactant was investigated in a carbonate rock. Firstly, the interfacial tension (IFT) of the oil-brine interface with surfactant at various temperatures was measured. Subsequently, the rock wettability was determined under high-pressure and high-temperature conditions. Finally, the study examined the impact of low salinity water on the adsorption of the cationic gemini surfactant, both statically and dynamically. The results showed that the low salinity water condition does not cause a significant impact on the IFT reduction and wettability alteration as compared to the high salinity water conditions. However, the low salinity water condition reduced the surfactant's static adsorption on the carbonate core by four folds as compared to seawater. The core flood results showed a significantly lower amount of dynamic adsorption (0.11 mg/g-rock) using low salinity water conditions. Employing such a method aids industrialists and researchers in developing a cost-effective and efficient cEOR process.

2.
ACS Omega ; 8(22): 19287-19301, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305254

RESUMO

Herein, the impacts of sulfonation temperature (100-120 °C), sulfonation time (3-5 h), and NaHSO3/methyl ester (ME) molar ratio (1:1-1.5:1 mol/mol) on methyl ester sulfonate (MES) yield were studied. For the first time, MES synthesis via the sulfonation process was modeled using the adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and response surface methodology (RSM). Moreover, particle swarm optimization (PSO) and RSM methods were used to improve the independent process variables that affect the sulfonation process. The RSM model (coefficient of determination (R2) = 0.9695, mean square error (MSE) = 2.7094, and average absolute deviation (AAD) = 2.9508%) was the least efficient in accurately predicting MES yield, whereas the ANFIS model (R2 = 0.9886, MSE = 1.0138, and AAD = 0.9058%) was superior to the ANN model (R2 = 0.9750, MSE = 2.6282, and AAD = 1.7184%). The results of process optimization using the developed models revealed that PSO outperformed RSM. The ANFIS model coupled with PSO (ANFIS-PSO) achieved the best combination of sulfonation process factors (96.84 °C temperature, 2.68 h time, and 0.92:1 mol/mol NaHSO3/ME molar ratio) that resulted in the maximum MES yield of 74.82%. Analysis of MES synthesized under optimum conditions using FTIR, 1H NMR, and surface tension determination showed that MES could be prepared from used cooking oil.

3.
Chemosphere ; 331: 138726, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37116721

RESUMO

Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models' performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.


Assuntos
Águas Residuárias , Purificação da Água , Água , Interações Hidrofóbicas e Hidrofílicas , Purificação da Água/métodos , Cerâmica
4.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838866

RESUMO

One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing lubricity. Herein, a novel synthesized magnetic surfactant was investigated for its performance as a shale swelling inhibitor in drilling mud. The conventional WBM and magnetic surfactant mixed WBM (MS-WBM) were formulated and characterized using Fourier Transform Infrared (FTIR) and Thermogravimetric analyzer (TGA). Subsequently, the performance of 0.4 wt% magnetic surfactant as shale swelling and clay hydration inhibitor in drilling mud was investigated by conducting linear swelling and capillary suction timer (CST) tests. Afterward, the rheological and filtration properties of the MS-WBM were measured and compared to conventional WBM. Lastly, the swelling mechanism was investigated by conducting a scanning electron microscope (SEM), zeta potential measurement, and particle size distribution analysis of bentonite-based drilling mud. Experimental results revealed that the addition of 0.4 wt% magnetic surfactant to WBM caused a significant reduction (~30%) in linear swelling. SEM analysis, contact angle measurements, and XRD analysis confirmed that the presence of magnetic surfactant provides long-term swelling inhibition via hydrophobic interaction with the bentonite particles and intercalation into bentonite clay layers. Furthermore, the inhibition effect showed an increase in fluid loss and a decrease in rheological parameters of bentonite mixed mud. Overall, the use of magnetic surfactant exhibits sterling clay swelling inhibition potential and is hereby proffered for use as a drilling fluid additive.


Assuntos
Surfactantes Pulmonares , Tensoativos , Bentonita/química , Argila , Minerais , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Magnéticos
5.
Sci Rep ; 13(1): 1090, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658191

RESUMO

Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are currently in high demand. In this work, we evaluated the demulsification potential of ethyl cellulose (EC) demulsifiers with varying viscosities-4 cp, 22 cp, and 100 cp, designated as EC-4, EC-22, and EC-100. Demulsifcation efficiency (DE) of these demulsifiers to remove water from emulsions produced from distilled water, seawater, and different salts (NaCl, MgCl2, and CaCl2) solution were assessed using the bottle test technique at ambient and elevated temperatures (25 °C and 90 °C). The bottle test outcomes showed that EC-4 and EC-22 had better performance at the ambient conditions to demulsify the emulsions formed from distilled water with %DE of 85.71% and 28.57%, respectively, while EC-100 achieved 3.9% water removal owing to its high viscosity which inhibited its adsorption at the oil-water interface. At demulsification temperature (90 °C) under the emulsions from distilled water, the %DE of EC-4, EC-22, and EC-100 was 99.23%, 58.57%, and 42.85%, respectively. Seawater hastened the demulsification activities of these demulsifiers. Also, these demulsifiers demonstrated excellent demulsification in emulsions from various salts. The demulsification performance of the EC-4 demulsifier in the presence of any of these salts was approximately 98% while MgCl2 and CaCl2 accelerated the water/oil separation performance of EC-22 and EC-100 by promoting their diffusion and adsorption at the interface. Viscosity and shear stress measurements corroborated the results obtained from the bottle tests. Injection of EC demulsifiers led to a reduction in the viscosity and shear stress of the formed emulsion. Reduction in the shear stress and viscosity were highest in EC-4 and lowest in EC-100. Optical microscopic images of emulsion injected with EC-4 demulsifier were analyzed at various periods during viscosity measurements. Based on the optical images obtained at different durations, a demulsification mechanism describing the activity of the EC demulsifier was proposed.

6.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365615

RESUMO

Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mobility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein, the rheology and oil displacement properties of okra mucilage were investigated for its enhanced oil recovery potential at a high temperature and high pressure (HTHP) in carbonate cores. The cellulosic polysaccharide used in the study is composed of okra mucilage extracted from okra (Abelmoschus esculentus) via a hot water extraction process. The morphological property of okra mucilage was characterized with Fourier transform infrared (FTIR), while the thermal stability was investigated using a thermogravimetric analyzer (TGA). The rheological property of the okra mucilage was investigated for seawater salinity and high-temperature conditions using a TA rheometer. Finally, an oil displacement experiment of the okra mucilage was conducted in a high-temperature, high-pressure core flooding equipment. The TGA analysis of the biopolymer reveals that the polymeric solution was stable over a wide range of temperatures. The FTIR results depict that the mucilage is composed of galactose and rhamnose constituents, which are essentially found in polysaccharides. The polymer exhibited pseudoplastic behavior at varying shear rates. The viscosity of okra mucilage was slightly reduced when aged in seawater salinity and at a high temperature. Nonetheless, the cellulosic polysaccharide exemplified sufficiently good viscosity under high-temperature and high-salinity (HTHS) conditions. Finally, the oil recovery results from the carbonate core plug reveal that the okra mucilage recorded a 12.7% incremental oil recovery over waterflooding. The mechanism of its better displacement efficiency is elucidated.

7.
Polymers (Basel) ; 14(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406305

RESUMO

Polymers play a significant role in enhanced oil recovery (EOR) due to their viscoelastic properties and macromolecular structure. Herein, the mechanisms of the application of polymeric materials for enhanced oil recovery are elucidated. Subsequently, the polymer types used for EOR, namely synthetic polymers and natural polymers (biopolymers), and their properties are discussed. Moreover, the numerous applications for EOR such as polymer flooding, polymer foam flooding, alkali-polymer flooding, surfactant-polymer flooding, alkali-surfactant-polymer flooding, and polymeric nanofluid flooding are appraised and evaluated. Most of the polymers exhibit pseudoplastic behavior in the presence of shear forces. The biopolymers exhibit better salt tolerance and thermal stability but are susceptible to plugging and biodegradation. As for associative synthetic polyacrylamide, several complexities are involved in unlocking its full potential. Hence, hydrolyzed polyacrylamide remains the most coveted polymer for field application of polymer floods. Finally, alkali-surfactant-polymer flooding shows good efficiency at pilot and field scales, while a recently devised polymeric nanofluid shows good potential for field application of polymer flooding for EOR.

8.
Materials (Basel) ; 15(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407858

RESUMO

Surfactant flooding is an enhanced oil recovery method that recovers residual and capillary trapped oil by improving pore-scale displacement efficiency. Low retention of injected chemicals is desired to ensure an economic and cost-effective recovery process. This paper examines the adsorption behavior of a novel gemini cationic surfactant on carbonate cores. The rock cores were characterized using an X-ray diffraction (XRD) spectroscope. In addition, the influence of critical parameters on the dynamic adsorption of the cationic gemini surfactant was studied by injecting the surfactant solution through carbonate cores in a core flooding apparatus until an equilibrium state was achieved. The concentration of surfactant was observed using high performance liquid chromatography. Experimental results showed that an increasing surfactant concentration causes higher retention of the surfactant. Moreover, increasing the flow rate to 0.2 mL/min results in lowering the surfactant retention percentage to 17%. At typical high salinity and high temperature conditions, the cationic gemini surfactant demonstrated low retention (0.42 mg/g-rock) on an Indiana limestone core. This study extends the frontier of knowledge in gemini surfactant applications for enhanced oil recovery.

9.
Environ Sci Pollut Res Int ; 29(17): 25138-25156, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34837608

RESUMO

A heterogeneous photocatalysis was adopted to treat textile industry effluent using a combination of pumice-supported ZnO (PUM-ZnO) photocatalyst and solar irradiation. The visible light-responsive PUM-ZnO photocatalyst was prepared via the impregnation method and characterized using various spectroscopic techniques. The photocatalytic degradation process was modeled via response surface methodology (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS), while the optimization of the three independent parameters significant to the photocatalytic process was carried out by a genetic algorithm (GA) and RSM methods. The low standard error of prediction (SEP) of 0.56-1.75% and high coefficient of determination (R2) greater than 0.96 for the models developed indicated that they adequately predicted the photodegradation process with high accuracy in the order of ANFIS > ANN > RSM. The process optimization results from the developed models showed that GA performed better than RSM. The best optimal condition (3.29 g/L catalyst dosage, 45.85 min irradiation time, and 3.13 effluent pH) that resulted in maximum degradation efficiency of 99.46% was achieved by the ANFIS model coupled with GA (ANFIS-GA).


Assuntos
Poluentes Ambientais , Óxido de Zinco , Redes Neurais de Computação , Silicatos , Têxteis
10.
Int J Biol Macromol ; 148: 1251-1271, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760018

RESUMO

Ascorbic acid was used for the first time to synthesize crystalline starch nanoparticles (CSNP). The physical properties of the CSNP were investigated. Rheological properties of the crystalline starch nanofluid (CSNF) were compared with native cassava starch (CS) and commercial polymer xanthan. Interfacial properties of the CSNF at the interface of oil and water (O/W) were investigated at different concentrations and temperatures. Wettability alteration efficiency of CSNF on oil-wet sandstone surface was investigated using the sessile drop method. Core flooding experiment was conducted at reservoir conditions. The methods were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm and increased in crystallinity of 7%. Viscosity increased with increase in surface area and temperature of the CSNF compared to a decrease in viscosity as the temperature increases for xanthan. Interfacial tension (IFT) decreased with increase in concentration of CSNF, electrolyte and temperature. The results show that CSNF can change the wettability of sandstone at low concentration, high salinity and elevated temperature. Pressure drops data shows stability of CSNF at 120 °C. The formation of oil bank was enough to increase oil recovery by 23%.


Assuntos
Ácidos/química , Nanopartículas/química , Óleos/química , Amido/química , Ondas Ultrassônicas , Fenômenos Químicos , Hidrólise , Estrutura Molecular , Tamanho da Partícula , Salinidade , Análise Espectral , Temperatura , Viscosidade
11.
PLoS One ; 14(9): e0220778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560699

RESUMO

Ascorbic acid was used for the first time to synthesize cellulose nanoparticles (CNP) extracted from okra mucilage. The physical properties of the CNP including their size distribution, and crystalline structures were investigated. The rheological properties of the cellulose nanofluid (CNF) were compared with the bulk okra mucilage and commercial polymer xanthan. The interfacial properties of the CNF at the interface of oil-water (O/W) system were investigated at different concentrations and temperatures. The effects of the interaction between the electrolyte and ultrasonic were determined. Core flooding experiment was conducted at reservoir condition to justify the effect of the flow behaviour and disperse phase behaviour of CNF on additional oil recovery. The performance of the CNF was compared to conventional EOR chemical. The combined method of ultrasonic, weak-acid hydrolysis and nanoprecipitation were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm, increased yield of 51% and preserved crystallinity respectively. The zeta potential result shows that the CNF was stable, and the surface charge signifies long term stability of the fluid when injected into oil field reservoirs. The CNF, okra and xanthan exhibited shear-thinning and pseudoplastic behaviour. The IFT decreased with increase in concentration of CNF, electrolyte and temperature. The pressure drop data confirmed the stability of CNF at 120°C and the formation of oil bank was enough to increase the oil recovery by 20%. CNF was found to be very effective in mobilizing residual oil at high-temperature high-pressure (HTHP) reservoir condition. The energy and cost estimations have shown that investing in ultrasonic-assisted weak-acid hydrolysis is easier, cost-effective, and can reduce energy consumption making the method economically advantageous compared to conventional methods.


Assuntos
Celulose/química , Nanopartículas/química , Óleos/química , Reologia , Modelos Teóricos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fenômenos Físicos , Polímeros/química , Temperatura
12.
Ultrason Sonochem ; 51: 214-222, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30401623

RESUMO

Ultrafiltration has been proven to be very effective in the treatment of oil-in-water emulsions, since no chemical additives are required. However, ultrafiltration has its limitations, the main limits are concentration polarization resulting to permeate flux decline with time. Adsorption, accumulation of oil and particles on the membrane surface which causes fouling of the membrane. Studies have shown that the ultrasonic is effective in cleaning of fouled membrane and enhancing membrane filtration performance. But the effectiveness also, depends on the selection of appropriate membrane material, membrane geometry, ultrasonic module design, operational and processing condition. In this study, a hollow and flat-sheet polyurethane (PU) membranes synthesized with different additives and solvent were used and their performance evaluated with oil-in-water emulsion. The steady-state permeate flux and the rejection of oil in percentage (%) at two different modes were determined. A dry/wet spinning technique was used to fabricate the flat-sheet and hollow fibre membrane (HFMs) using Polyethersulfone (PES) polymer base, Polyvinylpyrrolidone (PVP) additive and N, N-Dimethylacetamide (DMAc) solvent. Ultrasonic assisted cross-flow ultrafiltration module was built to avoid loss of ultrasonic to the surrounding. The polyurethane (PU) was synthesized by polymerization and sulphonation to have an anionic group (-OH; -COOH; and -SO3H) on the membrane surface. Changes in morphological properties of the membrane had a significant effect on the permeate flow rate and oil removal. Generation of cavitation and Brownian motion by the ultrasonic were the dominant mechanisms responsible for ultrafiltration by cracking the cake layers and reducing concentration polarization at the membrane surface. The percentage of oil after ultrafiltration process with ultrasonic is about 90% compared to 49% without ultrasonic. Ultrasonic is effective in enhancing the membrane permeate flux and controlling membrane fouling.

13.
Environ Sci Pollut Res Int ; 25(35): 35130-35142, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30328041

RESUMO

In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-µECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.


Assuntos
Óxido Ferroso-Férrico/química , Grafite/química , Praguicidas/química , Verduras/química , Adsorção , Biopolímeros/química , Carotenoides/química , Cromatografia Gasosa , Dimetoato/análise , Limite de Detecção , Solanum lycopersicum , Magnetismo , Nanopartículas de Magnetita/química , Compostos Orgânicos/análise , Óxidos/química , Praguicidas/análise , Extração em Fase Sólida/métodos
14.
PLoS One ; 13(8): e0200595, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089104

RESUMO

Treated Rhizopora mucronata tannin (RMT) as a corrosion inhibitor for carbon steel and copper in oil and gas facilities was investigated. Corrosion rate of carbon-steel and copper in 3wt% NaCl solution by RMT was studied using chemical (weight loss method) and spectroscopic (FTIR) techniques at various temperatures in the ranges of 26-90°C. The weight loss data was compared to the electrochemical by the application of Faraday's law for the conversion of corrosion rate data from one system to another. The inhibitive efficiency of RMT was compared with commercial inhibitor sodium benzotriazole (BTA-S). The best concentration of RMT was 20% (w/v), increase in concentration of RMT decreased the corrosion rate and increased the inhibitive efficiency. Increase in temperature increased the corrosion rate and decreased the inhibitive efficiency but, the rate of corrosion was mild with RMT. The FTIR result shows the presence of hydroxyl group, aromatic group, esters and the substituted benzene group indicating the purity of the tannin. The trend of RMT was similar to that of BTA-S, but its inhibitive efficiency for carbon-steel was poor (6%) compared to RMT (59%). BTA-S was efficient for copper (76%) compared to RMT (74%) at 40% (w/v) and 20% (w/v) concentration respectively. RMT was efficient even at low concentration therefore, the use of RMT as a cost effective and environmentally friendly corrosion inhibiting agent for carbon steel and copper is herein proposed.


Assuntos
Rhizophoraceae/metabolismo , Cloreto de Sódio/química , Taninos/química , Cobre/química , Corrosão , Espectroscopia de Infravermelho com Transformada de Fourier , Aço/química , Temperatura , Triazóis/química
15.
Environ Sci Pollut Res Int ; 25(19): 19143-19154, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29725925

RESUMO

In this study, adsorption behavior of anthill-eggshell composite (AEC) for the removal of hexavalent chromium (Cr6+) from aqueous solution was investigated. The raw AEC sample was thermally treated at 864 °C for 4 h and characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray fluorescence (XRF) techniques. The effects of adsorption process variables including initial Cr6+ concentration, contact time, and adsorbent dosage on the Cr6+ removal efficiency were investigated using central composite design (CCD) of response surface methodology (RSM). Equilibrium adsorption isotherm and kinetic were also studied. From the analysis of variance (ANOVA), the three variables proved to be significant and the optimum conditions for Cr6+ adsorption were obtained to be 150 mg/L initial Cr6+ concentration, 45.04-min contact time, and 0.5 g adsorbent dosage, which resulted in 86.21% of Cr6+ adsorbed. Equilibrium isotherm study showed that Freundlich model fitted well to the experimental data. The pseudo-second-order kinetic model appeared to better describe the experimental data. The study showed that mixed anthill-eggshell is a promising adsorbent for removing Cr6+ from aqueous solution.


Assuntos
Cromo/análise , Casca de Ovo/química , Poluentes Químicos da Água/análise , Adsorção , Animais , Fenômenos Bioquímicos , Cromo/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA